Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (6): 1011-1022.DOI: 10.1007/s40195-021-01278-2
Previous Articles Next Articles
Xin Wei1, Junhua Dong1(), Yupeng Sun1,3, Nan Chen1, Qiying Ren1, Madhusudan Dhakal1,3, Xiaofang Li1, Wei Ke2
Received:
2021-03-23
Revised:
2021-05-04
Accepted:
2021-05-27
Online:
2022-06-10
Published:
2022-06-15
Contact:
Junhua Dong
About author:
Junhua Dong, jhdong@imr.ac.cnXin Wei, Junhua Dong, Yupeng Sun, Nan Chen, Qiying Ren, Madhusudan Dhakal, Xiaofang Li, Wei Ke. Influence of Deteriorated Bentonite Sediments on the Corrosion Behavior of NiCu Low Alloy Steel[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 1011-1022.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 Potentiodynamic polarization curves and open-circuit potential curves of NiCu low alloy steel in different simulated environments: a blank solution, b top supernatant, c bottom slurry
Environments | Blank solution | Top supernatant | Bottom slurry |
---|---|---|---|
Ecorr (V vs. SCE) | - 0.689 | - 0.723 | - 0.753 |
Icorr (μA cm-2) | 149.6 | 123.3 | 53.27 |
Table 1 Electrochemical parameters of NiCu low alloy steel obtained by fitting the potentiodynamic polarization curves
Environments | Blank solution | Top supernatant | Bottom slurry |
---|---|---|---|
Ecorr (V vs. SCE) | - 0.689 | - 0.723 | - 0.753 |
Icorr (μA cm-2) | 149.6 | 123.3 | 53.27 |
Fig. 3 Macroscopic photographs of NiCu low alloy steel specimens after immersed in the blank solution for 56 days and in top supernatant/bottom slurry for 52 days
Fig. 7 XRD spectra of the corrosion products in different simulated environments: a blank solution for 56 days, b top supernatant for 52 days, c bottom slurry for 52 days
Fig. 8 EIS evolution of NiCu low alloy steel immersed in the blank solution: a impedance modulus vs. frequency plots, b phase angle vs. frequency plots
Fig. 11 Equivalent circuit models for fitting the EIS data of NiCu low alloy steel: a (QHFs(Rs(Qo(RoW))(QdlRct))), b (QHFs(Rs(QrRr)(QdlRct))) or (QHFs(Rs(QHRH)(QdlRct)))
Time (d) | Rs (Ω·cm2) | Y0-o(Y0-r) (S·sn·cm-2) | no(nr) | Ro(Rr) (Ω·cm2) | Y0-W (S s0.5 cm-2) | Y0-dl (S sn cm-2) | ndl | Rct (Ω cm2) |
---|---|---|---|---|---|---|---|---|
Initial | 15.3 | 0.00095 | 1 | 55.6 | 0.0011 | 0.00024 | 0.82 | 739 |
4 | 10.9 | 0.074 | 0.44 | 163 | - | 0.0050 | 0.80 | 1337 |
13 | 10.6 | 0.0085 | 0.73 | 36.5 | - | 0.0063 | 0.87 | 1075 |
20 | 10.6 | 0.010 | 0.71 | 36.7 | - | 0.0066 | 0.87 | 1081 |
33 | 9.7 | 0.0092 | 0.71 | 113 | - | 0.0095 | 0.92 | 2185 |
48 | 13.7 | 0.0076 | 0.74 | 159 | - | 0.0086 | 0.93 | 2494 |
56 | 12.7 | 0.0084 | 0.83 | 66.0 | - | 0.0091 | 0.87 | 1691 |
Table 2 Fitting results of EIS in the blank solution
Time (d) | Rs (Ω·cm2) | Y0-o(Y0-r) (S·sn·cm-2) | no(nr) | Ro(Rr) (Ω·cm2) | Y0-W (S s0.5 cm-2) | Y0-dl (S sn cm-2) | ndl | Rct (Ω cm2) |
---|---|---|---|---|---|---|---|---|
Initial | 15.3 | 0.00095 | 1 | 55.6 | 0.0011 | 0.00024 | 0.82 | 739 |
4 | 10.9 | 0.074 | 0.44 | 163 | - | 0.0050 | 0.80 | 1337 |
13 | 10.6 | 0.0085 | 0.73 | 36.5 | - | 0.0063 | 0.87 | 1075 |
20 | 10.6 | 0.010 | 0.71 | 36.7 | - | 0.0066 | 0.87 | 1081 |
33 | 9.7 | 0.0092 | 0.71 | 113 | - | 0.0095 | 0.92 | 2185 |
48 | 13.7 | 0.0076 | 0.74 | 159 | - | 0.0086 | 0.93 | 2494 |
56 | 12.7 | 0.0084 | 0.83 | 66.0 | - | 0.0091 | 0.87 | 1691 |
Time (d) | Rs (Ω cm2) | Y0-o(Y0-r) (S sn cm-2) | no(nr) | Ro(Rr) (Ω·cm2) | Y0-W (S s0.5 cm-2) | Y0-dl (S sn cm-2) | ndl | Rct (Ω cm2) |
---|---|---|---|---|---|---|---|---|
Initial | 10.5 | 0.00018 | 0.90 | 213 | 0.00019 | 0.0049 | 0.60 | 833 |
4 | 9.1 | 0.00062 | 1 | 298 | 0.00011 | 0.0034 | 0.74 | 1386 |
13 | 15.7 | 0.013 | 0.72 | 164 | - | 0.011 | 0.89 | 1725 |
24 | 19.0 | 0.014 | 0.60 | 256 | - | 0.008 | 0.78 | 2687 |
31 | 19.4 | 0.0085 | 0.60 | 479 | - | 0.009 | 0.85 | 2936 |
45 | 32.4 | 0.0038 | 0.49 | 635 | - | 0.0040 | 0.87 | 3047 |
52 | 29.5 | 0.0035 | 0.49 | 658 | - | 0.0043 | 0.88 | 3119 |
Table 3 Fitting results of EIS for NiCu steel in top supernatant
Time (d) | Rs (Ω cm2) | Y0-o(Y0-r) (S sn cm-2) | no(nr) | Ro(Rr) (Ω·cm2) | Y0-W (S s0.5 cm-2) | Y0-dl (S sn cm-2) | ndl | Rct (Ω cm2) |
---|---|---|---|---|---|---|---|---|
Initial | 10.5 | 0.00018 | 0.90 | 213 | 0.00019 | 0.0049 | 0.60 | 833 |
4 | 9.1 | 0.00062 | 1 | 298 | 0.00011 | 0.0034 | 0.74 | 1386 |
13 | 15.7 | 0.013 | 0.72 | 164 | - | 0.011 | 0.89 | 1725 |
24 | 19.0 | 0.014 | 0.60 | 256 | - | 0.008 | 0.78 | 2687 |
31 | 19.4 | 0.0085 | 0.60 | 479 | - | 0.009 | 0.85 | 2936 |
45 | 32.4 | 0.0038 | 0.49 | 635 | - | 0.0040 | 0.87 | 3047 |
52 | 29.5 | 0.0035 | 0.49 | 658 | - | 0.0043 | 0.88 | 3119 |
Time (d) | Rs (Ω cm2) | Y0-H (S sn cm-2) | nH | RH (Ω·cm2) | Y0-dl (S·sn·cm-2) | ndl | Rct (Ω·cm2) |
---|---|---|---|---|---|---|---|
Initial | 16.0 | 0.00072 | 0.77 | 198 | 0.00056 | 0.82 | 867 |
4 | 16.1 | 0.0013 | 0.74 | 417 | 0.00042 | 1 | 2044 |
13 | 16.1 | 0.0028 | 0.79 | 1185 | 0.00050 | 0.96 | 7804 |
20 | 14.6 | 0.0021 | 0.96 | 586 | 0.0015 | 0.87 | 3238 |
31 | 15.3 | 0.0035 | 1 | 697 | 0.0023 | 0.90 | 3954 |
45 | 15.1 | 0.0055 | 0.98 | 843 | 0.0037 | 0.91 | 4626 |
52 | 15.5 | 0.0070 | 0.98 | 933 | 0.0046 | 0.91 | 5559 |
Table 4 Fitting results of EIS for NiCu steel in bottom slurry
Time (d) | Rs (Ω cm2) | Y0-H (S sn cm-2) | nH | RH (Ω·cm2) | Y0-dl (S·sn·cm-2) | ndl | Rct (Ω·cm2) |
---|---|---|---|---|---|---|---|
Initial | 16.0 | 0.00072 | 0.77 | 198 | 0.00056 | 0.82 | 867 |
4 | 16.1 | 0.0013 | 0.74 | 417 | 0.00042 | 1 | 2044 |
13 | 16.1 | 0.0028 | 0.79 | 1185 | 0.00050 | 0.96 | 7804 |
20 | 14.6 | 0.0021 | 0.96 | 586 | 0.0015 | 0.87 | 3238 |
31 | 15.3 | 0.0035 | 1 | 697 | 0.0023 | 0.90 | 3954 |
45 | 15.1 | 0.0055 | 0.98 | 843 | 0.0037 | 0.91 | 4626 |
52 | 15.5 | 0.0070 | 0.98 | 933 | 0.0046 | 0.91 | 5559 |
[1] | J.E. Campbell, R.M. Cranwell, Science 239, 1389 (1988). |
[2] | J. Wang, L. Chen, R. Su, X.G. Zhao, J. Rock Mech. Geotech. Eng. 10, 411 (2018). |
[3] | N. Rigonat, O. Isnard, S.L. Harley, I.B. Butler, J. Hazard. Mater. 341, 28 (2018). |
[4] | X. Wei, Y.M. Liu, J.H. Dong, S.F. Cao, J.L. Xie, N. Chen, F. Xue, C.G. Wang, W. Ke, Appl. Clay Sci. 167, 23 (2019). |
[5] | F.A. Martin, C. Bataillon, M.L. Schlegel, J. Nucl. Mater. 379, 80 (2008). |
[6] | F. King, Corrosion 69, 986 (2013). |
[7] | Y.F. Lu, J.H. Dong, W. Ke, J. Mater. Sci. Technol. 32, 341 (2016). |
[8] | Y.F. Lu, J.H. Dong, W. Ke, J. Mater. Sci. Technol. 31, 1047 (2015). |
[9] | H. Kihira, M. Kimura, Corrosion 67, 095002-095011 (2011). |
[10] | W.M. Ye, Y.G. Chen, B. Chen, Q. Wang, J. Wang, Eng. Geol. 116, 12(2010). |
[11] | N.R. Smart, B. Reddy, A.P. Rance, D.J. Nixon, N. Diomidis, Corros. Eng. Sci. Technol. 52, 113(2017). |
[12] | H.Y. Zhang, Y. Tan, F. Zhu, D.J. He, J.H. Zhu, Constr. Build. Mater. 224, 78 (2019). |
[13] | Y.G. Chen, X.X. Dong, X.D. Zhang, W.M. Ye, Y.J. Cui, Appl. Clay Sci. 166, 318 (2018). |
[14] | R. Sjöblom, H. Bjurström, R. Pusch, Appl. Clay Sci. 23, 187 (2003). |
[15] | S. Saba, A.M. Tang, Y.J. Cui, J.D. Barnichon,Swelling of Highly Compacted Bentonite-Sand Mixtures Used as Sealing Materials in Radioactive Waste Disposal (Springer), Berlin Heidelberg, |
[16] | F. King, Mater. Res. Soc. Symp. Proc. 2623, 1475 (2012). |
[17] | F. Cattant, D. Crusset, D. Féron, Mater. Today 11, 32 (2008). |
[18] | A. Honda, T. Teshima, K. Tsurudome, H. Ishikawa, Y. Yusa, N. Sasaki, Mater. Res. Soc. Symp. Proc. 212, 287 (1990). |
[19] | S. Kaufhold, A.W. Hassel, D. Sanders, R. Dohrmann, J. Hazard. Mater. 285, 464 (2015). |
[20] | G.P. Marsh, K.J. Taylor, I.D. Bland, C. Westcott, P.W. Tasker, S.M. Sharland, Mater. Res. Soc. Symp. Proc. 50, 421 (1985). |
[21] | Andra, Evaluation de la faisabilité du stockage géologique en formation argileuse. Chatenay-Malabry, France (2005). |
[22] | M.L. Schlegel, S. Necib, S. Daumas, M. Labat, C. Blanc, E. Foy, Corros. Sci. 136, 70 (2018). |
[23] | H.Y. Zhang, X.W. Wang, P. Liu, M. Yan, Y. Peng, Chin. J. Rock Mech. Eng. A02, 3605 (2016). |
[24] | S. García-García, S. Wold, M. Jonsson, Appl. Clay Sci. 43, 21 (2009). |
[25] | G. Ritvo, O. Dassa, M. Kochba, Aquaculture 218, 379 (2003). |
[26] | H.B. Min, S.Y. Lee, J. Ind. Eng. Chem. 16, 837 (2010). |
[27] | G. Montes-H, N. Marty, B. Fritz, A. Clement, N. Michau, Appl. Clay Sci. 30, 181 (2005). |
[28] | L. Carlson, O. Karnland, V.M. Oversby, A.P. Rance, N.R. Smart, M. Snellman, M. Vähänen, L.O. Werme, Phys. Chem. Earth 32, 334 (2007). |
[29] | O. Bildstein, L. Trotignon, M. Perronnet, M. Jullien, Phys. Chem. Earth 31, 618 (2006). |
[30] | M. Jeannin, D. Calonnec, R. Sabot, P. Refait, Electrochim. Acta 56, 1466 (2011). |
[31] | M. Jeannin, D. Calonnec, R. Sabot, P. Refait, Corros. Sci. 52, 2026(2010). |
[32] | X. Wei, J.H. Dong, N. Chen, A.P. Yadav, Q.Y. Ren, J. Wei, C.G. Wang, R.Y. Ma, W. Ke, J. Mater. Sci. Technol. 66, 46 (2021). |
[33] | L. Chen, Y.M. Liu, J. Wang, S.F. Cao, J.L. Xie, L.K. Ma, X.G. Zhao, Y.W. Li, J. Liu, Eng. Geol. 172, 57 (2014). |
[34] | F. Xue, X. Wei, J.H. Dong, C.G. Wang, W. Ke, J. Mater. Sci. Technol. 35, 596 (2019). |
[35] | F. Xue, X. Wei, J.H. Dong, I.N. Etim, C.G. Wang, W. Ke, J. Mater. Sci. Technol. 34, 1349 (2018). |
[36] | Y.F. Lu, J.H. Dong, W. Ke, Acta Metall. Sin. 51, 1067 (2015). |
[37] | K. Indira, T. Nishimura, Trans. Indian Inst. Met. 70, 2347 (2017). |
[38] | K. Indira, T. Nishimura, J. Bio Tribo Corros. 3, 28 (2017). |
[39] | Q.K. Lu, L.W. Wang, J.C. Xin, H.Y. Tian, X. Wang, Z.Y. Cui, Constr. Build. Mater. 238, 117763 (2020). |
[40] | L.W. Wang, J.M. Liang, H. Li, L.J. Cheng, Z.Y. Cui, Corros. Sci. 178, 109076(2021). |
[41] | M. Alizadeh, S. Bordbar, Corros. Sci. 70, 170 (2013). |
[42] | E. Mccafferty, Corros. Sci. 45, 1421 (2003). |
[43] | K. Idemitsu, S. Yano, X.B. Xia, Y. Inagaki, T. Arima, T. Mitsugashira, M. Hara, Y. Suzuki, Mater. Res. Soc. Symp. Proc. 713, 113 (2002). |
[44] | N.R. Smart, A.P. Rance, L. Carlson, L.O. Werme, Mater. Res. Soc. Symp. Proc. 932, 321 (2006). |
[45] | B.W.A. Sherar, P.G. Keech, Z. Qin, F. King, D.W. Shoesmith, Corrosion 66, 205 (2010). |
[46] | G.S. Pokrovski, J. Schott, F. Farges, J.L. Hazemann, Geochim. Cosmochim. Ac. 67, 3559 (2003). |
[47] | R.K. Vempati, Clay Clay Miner. 37, 273 (1989). |
[48] | S.H. Drissi, P. Refait, M. Abdelmoula, J.M.R. Genin, Corros. Sci. 37, 2025(1995). |
[49] | S. Kaufhold, R. Dohrmann, K. Ufer, F.M. Meyer, Appl. Clay Sci. 22, 145 (2003). |
[50] | J.R. Carter, M.T. Hatcher, L.D. Carlo, Anal. Chem. 59, 513 (1987). |
[51] | S.M. Yaakob, M.C. Ismail, Adv. Mater. Res. 789, 507 (2013). |
[52] | F. Farelas, M. Galicia, B. Brown, S. Nesic, H. Castaneda, Corros. Sci. 52, 509 (2010). |
[53] | F. Mansfeld, J. Electrochem. Soc. 135, 906 (1988). |
[54] | C.N. Cao, J.Q. Zhang, An Introduction of Electrochemical Impedance Spectroscopy Science (Science Press), Beijing, |
[1] | Wen-Ting Zhu, Jun-Jun Cui, Zhen-Ye Chen, Yang Zhao, Li-Qing Chen. Correlation of Microstructure Feature with Impact Fracture Behavior in a TMCP Processed High Strength Low Alloy Construction Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 527-536. |
[2] | Hongchang Qian, Shangyu Liu, Wenlong Liu, Pengfei Ju, Dawei Zhang. Microbiologically Influenced Corrosion of Q235 Carbon Steel by Aerobic Thermoacidophilic Archaeon Metallosphaera cuprina [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 201-211. |
[3] | Min Wang, Yuanjie Zhang, Bo Song, Qingsong Wei, Yusheng Shi. Wear Performance and Corrosion Behavior of Nano-SiCp-Reinforced AlSi7Mg Composite Prepared by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1213-1222. |
[4] | Shuai Zhang, Bao-Chang Liu, Mei-Xuan Li, Hui-Yuan Wang, Yin-Long Ma. Effect of Microstructures and Textures on Different Surfaces on Corrosion Behavior of an as-Extruded ATZ411 Magnesium Alloy Sheet [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1029-1041. |
[5] | Mingxiao Guo, Junrong Tang, Tianzhen Gu, Can Peng, Qiaoxia Li, Chen Pan, Zhenyao Wang. Corrosion Behavior of 316L Stainless Steels Exposed to Salt Lake Atmosphere of Western China for 8 years [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 555-564. |
[6] | Chuang-Shi Feng, Tian-Wei Lu, Tian-Li Wang, Man-Zhen Lin, Junhua Hou, Wenjun Lu, Wei-Bing Liao. A Novel High-Entropy Amorphous Thin Film with High Electrical Resistivity and Outstanding Corrosion Resistance [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1537-1545. |
[7] | He Huang, Huan Liu, Li-Sha Wang, Yu-Hua Li, Solomon-Oshioke Agbedor, Jing Bai, Feng Xue, Jing-Hua Jiang. A High-Strength and Biodegradable Zn-Mg Alloy with Refined Ternary Eutectic Structure Processed by ECAP [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1191-1200. |
[8] | Dan-Yang Liu, Jin-Feng Li, Yong-Cheng Lin, Peng-Cheng Ma, Yong-Lai Chen, Xu-Hu Zhang, Rui-Feng Zhang. Cu/Li Ratio on the Microstructure Evolution and Corrosion Behaviors of Al-xCu-yLi-Mg Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1201-1216. |
[9] | Li-Sha Wang, Jing-Hua Jiang, Bassiouny Saleh, Qiu-Yuan Xie, Qiong Xu, Huan Liu, Ai-Bin Ma. Controlling Corrosion Resistance of a Biodegradable Mg-Y-Zn Alloy with LPSO Phases via Multi-pass ECAP Process [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1180-1190. |
[10] | Wen-Ya Zhang, Can-Ming Wang, Jing-Xin Ji, Xiao-Li Feng, Hong-Zhi Cui, Qiang Song, Chun-Zhi Zhang. Synthetic Effect of Cr and Mo Elements on Microstructure and Properties of Laser Cladding NiCrxMoy Alloy Coatings [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1331-1345. |
[11] | Jing-Jing Liao, Zhong-Bo Yang, Shao-Yu Qiu, Qian Peng, Zheng-Cao Li, Ming-Sheng Zhou, Hong Liu. Corrosion of New Zirconium Claddings in 500 °C/10.3 MPa Steam: Effects of Alloying and Metallography [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(8): 981-994. |
[12] | Ying Han, Hong-Rui Wang, Yun-Dong Cao, Wen-Tao Hou, Shu-Jun Li. Improved Corrosion Resistance of Selective Laser Melted Ti-5Cu Alloy Using Atomized Ti-5Cu Powder [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(8): 1007-1014. |
[13] | Tian-Hui Hu, Hong-Wei Shi, Tao Wei, Shi-Hua Fan, Fu-Chun Liu, En-Hou Han. Corrosion Protection of AA2024-T3 by Cerium Malate and Cerium Malate-Doped Sol-Gel Coatings [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(7): 913-924. |
[14] | Bao-Biao Yu, Hong Yan, Jian-Bin Zhu, Jian-Long Liu, Huo-Gen Li, Qiao Nie. Effects of La on Microstructure and Corrosion Behavior of AlSi5Cu1Mg Alloy [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(4): 443-451. |
[15] | Ruo-Yu Liu, Ran-Gan He, Yan-Xia Chen, Sheng-Feng Guo. Effect of Ag on the Microstructure, Mechanical and Bio-corrosion Properties of Fe-30Mn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(11): 1337-1345. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||