Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (5): 793-802.DOI: 10.1007/s40195-025-01830-4
Previous Articles Next Articles
Cuicui Shu1, Pengcheng Zhai1,2, Xiege Huang1, Sergey I. Morozov3, Guodong Li1,2(), Zhiyuan Pan4(
)
Received:
2024-11-21
Revised:
2024-12-13
Accepted:
2024-12-17
Online:
2025-05-10
Published:
2025-02-21
Contact:
Guodong Li,guodonglee@whut.edu.cn;Zhiyuan Pan,pzy820126@163.com
Cuicui Shu, Pengcheng Zhai, Xiege Huang, Sergey I. Morozov, Guodong Li, Zhiyuan Pan. First Principles Study of CoSb3/Ni Interface Structure and Mechanical Properties[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 793-802.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Crystal structure: a crystal structure of CoSb3, the Co and Sb atoms represented with dark-blue and brown spheres; b crystal structure of Ni, the Ni atom represented with blue sphere
Ni(100) | Ni(110) | Ni(111) |
---|---|---|
2.574 | 2.596 | 2.271 |
Table 1 Calculated surface energies, γ, for typical low-index surface for Ni
Ni(100) | Ni(110) | Ni(111) |
---|---|---|
2.574 | 2.596 | 2.271 |
Configurations | Formation energy (J/m2) |
---|---|
Single-layer Sb_CoSb3(100)/Ni(100) | − 1.932 |
Single-layer Sb_CoSb3(100)/Ni(110)_1 | − 1.140 |
Single-layer Sb_CoSb3(100)/Ni(110)_2 | − 1.113 |
Single-layer Sb_CoSb3(100)/Ni(111)_1 | − 1.552 |
Single-layer Sb_CoSb3(100)/Ni(111_2 | − 1.738 |
Double-layer Sb_CoSb3(100)/Ni(100) | − 1.948 |
Double-layer Sb_CoSb3(100)/Ni(110)_1 | − 1.239 |
Double-layer Sb_CoSb3(100)/Ni(110)_2 | − 0.934 |
Double-layer Sb_CoSb3(100)/Ni(111)_1 | − 1.401 |
Double-layer Sb_CoSb3(100)/Ni(111)_2 | − 1.484 |
Table 2 Ef calculated for ten kinds of CoSb3/Ni interfacial structures
Configurations | Formation energy (J/m2) |
---|---|
Single-layer Sb_CoSb3(100)/Ni(100) | − 1.932 |
Single-layer Sb_CoSb3(100)/Ni(110)_1 | − 1.140 |
Single-layer Sb_CoSb3(100)/Ni(110)_2 | − 1.113 |
Single-layer Sb_CoSb3(100)/Ni(111)_1 | − 1.552 |
Single-layer Sb_CoSb3(100)/Ni(111_2 | − 1.738 |
Double-layer Sb_CoSb3(100)/Ni(100) | − 1.948 |
Double-layer Sb_CoSb3(100)/Ni(110)_1 | − 1.239 |
Double-layer Sb_CoSb3(100)/Ni(110)_2 | − 0.934 |
Double-layer Sb_CoSb3(100)/Ni(111)_1 | − 1.401 |
Double-layer Sb_CoSb3(100)/Ni(111)_2 | − 1.484 |
Fig. 2 Tensile stress as a function of tensile strain: a interfaces of CoSb3(100)/Ni(100), b corresponding defect-free single crystals of CoSb3(100) and Ni(100), c interfaces of CoSb3(100)/Ni(111), d corresponding defect-free single crystals of CoSb3(100) and Ni(111)
Fig. 3 Crystal structures of the single-layer Sb_CoSb3(100)/Ni(100) interface during the tensile process: a structure at 0.173 strain corresponding to ideal tensile strength, b structure at the failure strain of 0.196. c The bond lengths (Sb1-Sb2, Sb3-Sb4, Co1-Sb5, Co2-Sb6, Co3-Sb7, Co4-Sb8 bonds) with the increasing tensile strain during the tensile process
Fig. 4 Crystal structures of the double-layer Sb_CoSb3(100)/Ni(100) interface during the tensile process: a structure at 0.105 strain corresponding to the ideal strength, b structure at 0.127 strain before failure strain and c structure at the failure strain of 0.149. d The bond lengths (Co1-Sb1, Co2-Sb2, Co3-Sb3, Co4-Sb4, Sb5-Sb6, Sb7-Sb8 bonds) with the increasing tensile strain during the tensile process
Fig. 5 Crystal structures of the single-layer Sb_CoSb3(100)/Ni(111)_1 interface during the tensile process: a structure at 0.196 strain before failure strain and b structure at the failure strain of 0.208. c The bond lengths (Co1-Sb1, Co2-Sb2, Co3-Sb3, Co4-Sb4, Sb5-Sb7, Sb6-Sb8, Ni1-Sb5, Ni2-Co2 bonds) with the increasing tensile strain during the tensile process
Fig. 6 Crystal structures of the double-layer Sb_CoSb3(100)/Ni(111) interface during the tensile process: a structure at 0.094 strain before failure strain and b structure at the failure strain of 0.105. c The bond lengths (Co1-Sb1, Co2-Sb2, Co3-Sb3, Co4-Sb4, Ni1-Sb5, Ni2-Sb6, Ni3-Sb7 bonds) with the increasing tensile strain during the tensile process
[1] | G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105 (2008) |
[2] |
L.E. Bell, Science 321, 1457 (2008)
DOI PMID |
[3] | C. Stiewe, D. Ebling, E. Müller, Gefahrst. Reinhalt. Luft 77, 502 (2017) |
[4] | D. Champier, Energy Conv. Manag. 140, 167 (2017) |
[5] | P.P. Chen, H.Y. Xie, L.D. Zhao, Acta Metall. Sin.-Engl. Lett. (2024). https://doi.org/10.1007/s40195-024-01798-7 |
[6] | X.C. Guan, Z.Y. Liu, N. Ma, Z. Li, J. Liu, H.Y. Zhang, H.L. Li, Q. Ba, J.J. Ma, C.G. Jin, A.L. Xia, Acta Metall. Sin.-Engl. Lett. (2024). https://doi.org/10.1007/s40195-024-01794-x |
[7] | S.Q. Lin, S.Y. Wang, Y.J. Li, Z.Y. Lai, X.T. Yang, X.Y. Lu, M. Jin, Acta Metall. Sin.-Engl. Lett. (2024). https://doi.org/10.1007/s40195-024-01790-1 |
[8] | Y.T. Fan, C.H. Xie, J. Li, X.Y. Meng, J.C. Sun, J.S. Wu, X.F. Tang, G.J. Tan, Energy Environ. Mater. (2024). https://doi.org/10.1002/eem2.12535 |
[9] | G. Rogl, P. Rogl, Curr. Opin. Green Sustain. Chem. 4, 50 (2017) |
[10] | G. Rogl, A. Grytsiv, P. Rogl, N. Peranio, E. Bauer, M. Zehetbauer, O. Eibl, Acta Mater. 63, 30 (2014) |
[11] | Z.Y. Liu, J.L. Zhu, X. Tong, S. Niu, W.Y. Zhao, J. Adv. Ceram. 9, 647 (2020) |
[12] | L.X. Zhang, H. Pan, Z. Sun, H.Y. Geng, Y.S. Xu, Q. Chang, B. Zhang, A.C.S. Appl. Mater. Interfaces 15, 59912 (2023) |
[13] | Z. Sun, X. Chen, J.C. Zhang, H.Y. Geng, L. Zhang, J. Materiomics 8, 882 (2022) |
[14] | S.W. Chen, Z.W. Liu, H.S. Chu, Z.Y. Huang, J. Alloy. Compd. 731, 111 (2018) |
[15] | A.F. Musa, S.W. Chen, J. Electron. Mater. 49, 6068 (2020) |
[16] | W.A. Chen, S.W. Chen, S.M. Tseng, H.W. Hsiao, Y.Y. Chen, G.J. Snyder, Y.L. Tang, J. Alloy. Compd. 632, 500 (2015) |
[17] | J.Q. Zhang, P. Wei, H.Q. Zhang, L.Z. Li, W.T. Zhu, X.L. Nie, W.Y. Zhao, Q.J. Zhang, A.C.S. Appl. Mater. Interfaces 15, 22705 (2023) |
[18] | S.J. Joo, J.E. Lee, B.S. Kim, B.K. Min, Materials 13, 3117 (2020) |
[19] | D.G. Zhao, X.Y. Li, L. He, W. Jiang, L.D. Chen, J. Alloy. Compd. 477, 425 (2009) |
[20] | D.G. Zhao, H.R. Geng, X.Y. Teng, J. Alloy. Compd. 517, 198 (2012) |
[21] | Q.H. Zhang, J.C. Liao, Y.S. Tang, M. Gu, R.H. Liu, S.Q. Bai, L.D. Chen, J. Inorg. Mater. 33, 889 (2018) |
[22] | V. Trivedi, M. Battabyal, B.S. Murty, R. Gopalan, Ceram. Int. 48, 29175 (2022) |
[23] | X. Shao, R.H. Liu, L. Wang, J. Chu, G.H. Bai, S.Q. Bai, M. Gu, L.N. Zhang, W. Ma, L.D. Chen, J. Inorg. Mater. 35, 224 (2020) |
[24] |
F. Kresse, Phys. Rev. B 54, 11169 (1996)
DOI PMID |
[25] | G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996) |
[26] | K. Momma, F. Izumi, J. Appl. Crystallogr. 41, 653 (2008) |
[27] |
M. Nielsen, Phys. Rev. B 32, 3780 (1985)
PMID |
[28] | D. Roundy, C.R. Krenn, M.L. Cohen, J.W. Morris, Phys. Rev. Lett. 82, 2713 (1999) |
[29] | S.Q. Hao, B. Delley, C. Stampfl, Phys. Rev. B 74, 035402 (2006). https://doi.org/10.1103/PhysRevB.74.035402 |
[30] | S.Q. Hao, B. Delley, S. Veprek, C. Stampfl, Phys. Rev. Lett. 97, 086102 (2006) |
[31] | T. Schmidt, G. Kliche, H.D. Lutz, Acta Crystallogr. Sect. C-Cryst. Struct. Commun. 43, 1678 (1987) |
[32] | R.J. Birgeneau, J. Cordes, G. Dolling, A.D.B. Woods, Phys. Rev. 136, A1359 (1964) |
[33] | G.D. Li, S.G. Hao, U. Aydemir, M. Wood, W.A. Goddard, P.C. Zhai, Q.J. Zhang, G.J. Snyder, A.C.S. Appl. Mater. Interfaces 8, 31968 (2016) |
[34] | S.Q. Hao, B. Delley, C. Stampfl, Phys. Rev. B 74, 035424 (2006). https://doi.org/10.1103/PhysRevB.74.035424 |
[35] | G.D. Li, Q. An, W.J. Li, W.A. Goddard, P.C. Zhai, Q.J. Zhang, G.J. Snyder, Chem. Mat. 27, 6329 (2015) |
[36] | G.D. Li, S. Bajaj, U. Aydemir, S.Q. Hao, H. Xiao, W.A. Goddard, P.C. Zhai, Q.J. Zhang, G.J. Snyder, Chem. Mat. 28, 2172 (2016) |
[37] | S.H. Park, Y. Jin, J. Cha, K. Hong, Y. Kim, H. Yoon, C.Y. Yoo, I. Chung, ACS Appl. Energ. Mater. 1, 1603 (2018) |
[38] | X. Bao, M. Gu, Q.H. Zhang, Z.H. Wu, S.Q. Bai, L.D. Chen, H.Q. Xie, J. Electron. Mater. 48, 5523 (2019) |
[39] | K. Placha, R.S. Tuley, M. Salvo, V. Casalegno, K. Simpson, Materials 11, 2483 (2018) |
[1] | Siqi Lin, Shiyun Wang, Yanjiao Li, Zhenyu Lai, Xiaotang Yang, Xinyu Lu, Min Jin. Efficient Reduction of Carrier Concentration in SnTe: The Case of Gd Doping [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 859-868. |
[2] | Pengpeng Chen, Hongyao Xie, Li-Dong Zhao. Recent Progress on Diamondoid Cu2SnSe3 Thermoelectric Materials: A Review [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 707-719. |
[3] | Haolin Ye, Chongjian Zhou. Low Thermal Conductivity Contributes to High Thermoelectric Performance: A Review [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 720-732. |
[4] | Yaru Gong, Wei Dou, Yanan Li, Pan Ying, Guodong Tang. A Review of Polycrystalline SnSe Thermoelectric Materials: Progress and Prospects [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 733-753. |
[5] | Yicheng Wang, Rongcheng Li, Bowen Jin, Chenghao Xie, Xinfeng Tang, Gangjian Tan. Revealing the True Thermoelectric Properties of SnTe through Removing SnO2 Contamination [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 754-762. |
[6] | Xinghui Wang, Yu Yan, Wen Zhang, Huijun Kang, Enyu Guo, Zongning Chen, Rongchun Chen, Tongmin Wang. Enhanced Thermoelectric and Mechanical Properties of ZrNiSn Half-Heusler Compounds by Excess Ag Doping at Ni Sites [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 763-771. |
[7] | Hong Zeng, Liqing Xu, Wei Liu, Xinxiu Cheng, Wenke He, Yu Xiao. Thermoelectric Performance of Layered PbBi4Te7 Compound [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 772-780. |
[8] | Ze Li, Xing Yang, Tian-En Shi, Wang-Qi Bao, Jing Feng, Zhen-Hua Ge. One-Step Carrier Modulation and Nano-Composition Enhancing Thermoelectric and Mechanical Properties of p-Type SnSe Polycrystals by Introducing Ag9GaSe6 Compound [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 781-792. |
[9] | Baocheng Yuan, Yi Wen, Lei Wang, Zhihao Li, Hong-Chao Wang, Cheng Chang, Li-Dong Zhao. Impact of CuFeS2 on the Thermoelectric Performance of SnTe [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 803-810. |
[10] | Mi Qin, Bingqing Cao, Pan Zhang, Xuemei Zhang, Ziqi Han, Xiaohong Zheng, Xianlong Wang, Xin Chen, Yongsheng Zhang. Point Defects and Grain Boundaries Effects on Electrical Transports of PbTe Using the Non-equilibrium Green’s Function [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 811-822. |
[11] | Chengwei Sun, Wang Li, Chengjun Li, Yingchao Wei, Wenyuan Ma, Xin Li, Qinghui Jiang, Yubo Luo, Junyou Yang. Thermoelectric Performance of CuInSe2-ZnSe Solid Solution [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 823-830. |
[12] | Yuqing Sun, Fulong Liu, Zhihao Li, Panpan Peng, Yujie Zong, Peng Cao, Chunlei Wang, Hongchao Wang. Influence of Carbon Nanotubes on the Thermoelectric and Mechanical Properties of Cu2.1Mn0.9SnSe4 Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 831-838. |
[13] | Longli Wang, Rongcheng Li, Peilin Miao, Jiushun Zhu, Gangjian Tan, Xinfeng Tang. Heterogeneous Interface Microstructure and Thermoelectromagnetic Conversion Performance of BiSbTe/MnCoGe Multifunctional Materials [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 839-848. |
[14] | Xicheng Guan, Zhiyuan Liu, Ni Ma, Zhou Li, Juan Liu, Huiyan Zhang, Hailing Li, Qian Ba, Junjie Ma, Chuangui Jin, Ailin Xia. High-Performance p-Type Bi2Te3-Based Thermoelectric Materials with a Wide Temperature Range Obtained by Direct Sb Doping [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(5): 849-858. |
[15] | Qiu-Yue Jia, Yu-Min Wang, Xu Zhang, Guo-Xing Zhang, Qing Yang, Li-Na Yang, Xu Kong, Xiao-Fang Li, Rui Yang. Multiscale Failure Mechanism Analysis of SiC Fiber-Reinforced TC17 Composite Subjected to Transverse Tensile Loading at Elevated Temperature [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 1007-1022. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||