Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (7): 1179-1192.DOI: 10.1007/s40195-023-01555-2
Previous Articles Next Articles
Wenjing Lou1, Lin Cheng1,2(), Runsheng Wang1, Chengyang Hu1(
), Kaiming Wu1,2
Received:
2022-12-22
Revised:
2023-02-05
Accepted:
2023-02-20
Online:
2023-07-10
Published:
2023-07-04
Contact:
Lin Cheng, Chengyang Hu
Wenjing Lou, Lin Cheng, Runsheng Wang, Chengyang Hu, Kaiming Wu. Atomistic Investigation of the Influence of Hydrogen on Mechanical Response during Nanoindentation in Pure Iron[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1179-1192.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Schematic diagram of the indentation simulation. The gray area represents the fixed layer, the dark blue area represents the thermostatics layer, and the light blue area represents the Newtonian layer
Model type | Cartesian coordinate | ||
---|---|---|---|
x-axis | y-axis | z-axis | |
[001] model | [100] | [010] | [001] |
[110] model | [101] | [010] | [101] |
[111] model | [112] | [−110] | [111] |
Table 1 Geometry parameters of the models utilized in this work
Model type | Cartesian coordinate | ||
---|---|---|---|
x-axis | y-axis | z-axis | |
[001] model | [100] | [010] | [001] |
[110] model | [101] | [010] | [101] |
[111] model | [112] | [−110] | [111] |
Models | Poisson ratio | Young’s modulus | Reduced modulus of the contact | Critical shear stress |
---|---|---|---|---|
[001] | 0.30 | 116.84 | 128.39 | 3.30 |
[110] | 0.30 | 159.46 | 175.24 | 3.09 |
[111] | 0.30 | 181.06 | 198.96 | 3.16 |
[001]-1%H | 0.35 | 119.14 | 135.24 | 3.43 |
[001]-2%H | 0.35 | 117.45 | 134.28 | 3.38 |
Table 2 Parameters examined based on the tensile simulation results
Models | Poisson ratio | Young’s modulus | Reduced modulus of the contact | Critical shear stress |
---|---|---|---|---|
[001] | 0.30 | 116.84 | 128.39 | 3.30 |
[110] | 0.30 | 159.46 | 175.24 | 3.09 |
[111] | 0.30 | 181.06 | 198.96 | 3.16 |
[001]-1%H | 0.35 | 119.14 | 135.24 | 3.43 |
[001]-2%H | 0.35 | 117.45 | 134.28 | 3.38 |
Fig. 2 Snapshots of the nanoindentation simulation at the smaller depth in the [001] model. a1, b1 Hydrogen-free model, c1, d1 hydrogen-charged model at the indentation depth of 9.2 and 11.1 Å, respectively; a2, b2, c2 and d2 the stress distribution of a1, b1, c1 and d1, respectively. The red dots represent hydrogen atoms, and the white blocks represent atomic defect clusters resulted by hydrogen atoms
Fig. 3 Snapshot of nanoindentation simulation at different indentation depth in the [001] model. Top view of hydrogen-free model (a1, c1) and hydrogen-charged model e1, g1 at the indentation depth of 9.5 and 27 Å, respectively; dislocation distribution in the hydrogen-free model b1, d1 and hydrogen-charged model f1, h1 at the indentation depth of 27 and 30 Å; stress distribution a2-h2 corresponding to a1-h1. The atoms are colored according to the CNA value and all BCC Fe atoms are removed
Fig. 4 Effects of hydrogen concentration on the dislocation evolution in the [001] model. Top view of the models at the indentation depth of 30 Å with hydrogen concentration of a 0% H, b 1% H, c 2% H and d 3% H; dislocations distribution at the indentation depth of 30 Å for e 0% H, f 1% H, g 2% H, h 3% H
Fig. 5 Effects of hydrogen concentration on the mechanical properties in the [001] model: a depth-force curves; b depth-hardness curves, c depth-dislocation density curves
Fig. 6 Dislocation spatial distribution at the indentation depth of 30 Å under different indenter radii. Indentation radius of a 15 Å, b 30 Å, c 45 Å and d 60 Å indented for hydrogen-free model and indentation radius of e 15 Å, f 30 Å, g 45 Å and h 60 Å for hydrogen-charged model. All BCC Fe atoms have been removed
Fig. 7 Mechanical properties obtained with varying indentation size and hydrogen concentration. Force-depth curves of models with a 0% H, b 1% H, c 2% H concentrations, d depth-hardness curves of models for different radii
Fig. 8 Depth-force curves under different indenter penetration velocity with/without hydrogen addition. Hydrogen-free models with a [001] surface normal, b [110] surface normal, c [111] surface normal; hydrogen-charged models with d [001] surface normal, e [110] surface normal, f [111] surface normal. All BCC Fe atoms have been removed
Fig. 9 Cross-sectional view of the models with [001] surface normal a without and d with hydrogen addition, the models with [110] surface normal b without and e with hydrogen addition, and the models with [111] surface normal c without and f with hydrogen addition. The blue indicates the BCC atoms are in blue and the FCC atoms are in green
Fig. 10 Snapshots of nanoindentation process in the [110] model at different indentation depth. First dislocation occurred at the depth of a 4.8 Å without hydrogen and d 6.7 Å with hydrogen; top view of the models b without and e with hydrogen addition at the indentation depth of 27 Å; dislocation distribution c without and f with hydrogen addition at the indentation depth of 27 Å. The atoms are colored according to the CNA value and all BCC Fe atoms are removed
Fig. 11 Snapshots of nanoindentation process in the [111] model at different indentation depth. First dislocation occurred at the depth of a 5.8 Å without hydrogen addition and d 6.6 Å with hydrogen addition; top view of the models b without and e with hydrogen addition at the indentation depth of 27 Å, and dislocation distribution c without and f with hydrogen addition at the indentation depth of 27 Å. The atoms are colored according to the CNA value and all BCC Fe atoms are removed
Fig. 12 Mechanical properties of the models with different surface normal and varying hydrogen concentrations. Depth-force curves of the models a without and d with hydrogen addition, depth-hardness curves of the models b without and e with hydrogen addition, and depth-dislocation density curves of the models c without and f with hydrogen addition
[1] |
A. Barnoush, H. Vehoff, Scr. Mater. 55, 195 (2006).
DOI URL |
[2] |
N.T.Y. Katz, W.W. Gerberich, Eng. Fract. Mech. 68, 619 (2001).
DOI URL |
[3] |
A. Barnoush, H. Vehoff, Corros. Sci. 50, 259 (2008).
DOI URL |
[4] | L.B. Pfeil, Roy. Soc. Proc. A 112, 182 (1926). |
[5] |
C.D. Beachem, Metall. Mater. Trans. B 3, 441 (1972).
DOI URL |
[6] |
P. Gong, I. Katzarov, J. Nutter, A.T. Paxton, B. Wynne, W.M. Rainforth, Scr. Mater. 194, 113683 (2021).
DOI URL |
[7] |
K. Tomatsu, T. Omura, Y. Nishiyama, Y. Todaka, ISIJ Int. 56, 2298 (2016).
DOI URL |
[8] |
V. Gaspard, G. Kermouche, D. Delafosse, A. Barnoush, Mater. Sci. Eng. A 604, 86 (2014).
DOI URL |
[9] |
S. Wang, S. Ohnuki, N. Hashimoto, K. Chiba, Mater. Sci. Eng. A. 560, 332 (2013).
DOI URL |
[10] | I.H. Katzarov, D.L. Pashov, A.T. Paxton, Phys. Rev. Mater. 1, 033602 (2017). |
[11] |
K. Zhao, J. He, A.E. Mayer, Z. Zhang, Acta Mater. 148, 18 (2018).
DOI URL |
[12] |
Z. Zheng, S. Liang, Y. Zhu, M. Huang, Z. Li, Mech. Mater. 140, 103221 (2020).
DOI URL |
[13] |
K. Zhao, A.E. Mayer, J. He, Z. Zhang, Int. J. Mech. Sci. 148, 158 (2018).
DOI URL |
[14] |
H.T. Luu, S.L. Dang, T.-V. Hoang, N. Gunkelmann, Appl. Surf. Sci. 551, 149221 (2021).
DOI URL |
[15] |
X. Zhou, B. Ouyang, W.A. Curtin, J. Song, Acta Mater. 116, 364 (2016).
DOI URL |
[16] |
M. Wen, L. Zhang, B. An, S. Fukuyama, K. Yokogawa, Phys. Rev. B 80, 094113 (2009).
DOI URL |
[17] |
A. Chauniyal, G. Dehm, R. Janisch, J. Mech. Phys. Solids 154, 104511 (2021).
DOI URL |
[18] |
X. Liu, F. Yuan, Y. Wei, Appl. Surf. Sci. 279, 159 (2013).
DOI URL |
[19] | P.G. Heighway, D. McGonegle, N. Park, A. Higginbotham, J.S. Wark, Phys. Rev. Mater. 3, 083602 (2019). |
[20] |
P. Tang, J. Feng, Z. Wan, X. Huang, S. Yang, L. Lu, X. Zhong, Ceram. Int. 47, 20298 (2021).
DOI URL |
[21] |
G.Z. Voyiadjis, M. Yaghoobi, Mater. Sci. Eng. A 634, 20 (2015).
DOI URL |
[22] |
J. Song, W.A. Curtin, Nat. Mater. 12, 145 (2013).
DOI PMID |
[23] | P. Hirel, Comput. Phys. 197, 212 (2015). |
[24] |
A. Stukowski, Model. Simul. Mater. Sc. 18, 015012 (2010).
DOI URL |
[25] | H. Tsuzuki, P.S. Branicio, J.P. Rino, Comput. Phys. 177, 518 (2007). |
[26] |
H.J.N. Daniel Faken, Comput. Mater. Sci. 2, 279 (1994).
DOI URL |
[27] | C.L.K.S.J.P.J.C. Hamilton, Phys. Rev. B 58, 17 (1998). |
[28] |
A. Stukowski, V.V. Bulatov, A. Arsenlis, Model. Simul. Mater. Sc. 20, 085007 (2012).
DOI URL |
[29] |
J.A. Hofer, C.J. Ruestes, E.M. Bringa, H.M. Urbassek, Model. Simul. Mater. Sc. 28, 025010 (2020).
DOI URL |
[30] |
M.I. Mendelev, S. Han, D.J. Srolovitz, G.J. Ackland, D.Y. Sun, M. Asta, Philos. Mag. 83, 3977 (2003).
DOI URL |
[31] |
A. Ramasubramaniam, M. Itakura, E.A. Carter, Phys. Rev. B 79, 174101 (2009).
DOI URL |
[32] | A.J. Bushby, N.M. Jennett, Mat. Res. Soc. Symp. 649, Q7 (2001). |
[33] |
C. Begau, A. Hartmaier, E.P. George, G.M. Pharr, Acta Mater. 59, 934 (2011).
DOI URL |
[34] | R.L. Jackson, H. Ghaednia, H. Lee, A. Rostami, X. Wang, in Tribology for Scientists and Engineers (Springer, New York, 2013), pp. 93-140. |
[35] |
Y.X. Du, L.J. Zhou, J.G. Guo, Mater. Chem. Phys. 288, 126412 (2022).
DOI URL |
[36] |
R. Smith, D. Christopher, S.D. Kenny, A. Richter, B. Wolf, Phys. Rev. B 67, 245405 (2003).
DOI URL |
[37] |
G. Voyiadjis, M. Yaghoobi,Crystals 7, 321 (2017).
DOI URL |
[38] |
I.J. Spary, A.J. Bushby, N.M. Jennett, Philos. Mag. 86, 5581 (2006).
DOI URL |
[39] |
T.L. Li, Y.F. Gao, H. Bei, E.P. George, J. Mech. Phys. Solids 59, 1147 (2011).
DOI URL |
[40] | J. Pfetzing, M.F.X. Wagner, R. Zarnetta, K.G. Tak, G. Eggeler, Prakt. Metallogr. 46, 2 (2009). |
[41] |
A. Barnoush, H. Vehoff, Acta Mater. 58, 5274 (2010).
DOI URL |
[42] |
D. Catoor, Y.F. Gao, J. Geng, M.J. Geng, M.J.N.V. Prasad, E.G. Herbert, K.S. Kumar, G.M. Pharr, E.P. George, Acta Mater. 61, 2953 (2013).
DOI URL |
[43] |
S. Wang, N. Hashimoto, S. Ohnuki, Sci. Rep. 3, 2760 (2013).
DOI |
[44] |
M. Itakura, H. Kaburaki, M. Yamaguchi, T. Okita, Acta Mater. 61, 6857 (2013).
DOI URL |
[45] |
I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross, K.E. Nygren, Metall. Mater. Trans. A 46, 2323 (2015).
DOI URL |
[46] |
M. Nagumo, K. Takai, Acta Mater. 165, 722 (2019).
DOI URL |
[47] |
A. Nagao, M. Dadfarnia, B.P. Somerday, P. Sofronis, R.O. Ritchie, J. Mech. Phys. Solids 112, 403 (2018).
DOI URL |
[48] |
M. Connolly, M. Martin, P. Bradley, D. Lauria, A. Slifka, R. Amaro, C. Looney, J.S. Park, Acta Mater. 180, 272 (2019).
DOI |
[49] |
M.L. Martin, M. Dadfarnia, A. Nagao, S. Wang, P. Sofronis, Acta Mater. 165, 734 (2019).
DOI |
[50] |
L. Wan, W.T. Geng, A. Ishii, J.P. Du, Q. Mei, N. Ishikawa, H. Kimizuka, S. Ogata, Int. J. Plast. 112, 206 (2019).
DOI URL |
[51] |
F. Cao, Z. Shi, G.L. Song, M. Liu, M.S. Dargusch, A. Atrens, Corros. Sci. 96, 121 (2015).
DOI URL |
[52] |
Q. Sun, J. He, A. Nagao, Y. Ni, S. Wang, Acta Mater. 246, 118660 (2023).
DOI URL |
[1] | Jun Zhang, Binhan Sun, Zhigang Yang, Chi Zhang, Hao Chen. Enhancing the Hydrogen Embrittlement Resistance of Medium Mn Steels by Designing Metastable Austenite with a Compositional Core-shell Structure [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1059-1077. |
[2] | Tuhin Das, Salim V. Brahimi, Jun Song, Stephen Yue. Assessment of Hydrogen Embrittlement Susceptibility and Mechanism(s) in Quench and Tempered AISI 4135 Steel Using A Novel Fast Fracture Test in Bending [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1078-1094. |
[3] | Dayong An, Yuhao Zhou, Yao Xiao, Xinxi Liu, Xifeng Li, Jun Chen. Observation of the Hydrogen-Dislocation Interactions in a High-Manganese Steel after Hydrogen Adsorption and Desorption [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1105-1112. |
[4] | Z. Wang, Q. Lu, Z.H. Cao, H. Chen, M.X. Huang, J.F. Wang. Review on Hydrogen Embrittlement of Press-hardened Steels for Automotive Applications [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1123-1143. |
[5] | Ming-Tu Ma, Ke-Jian Li, Yu Si, Peng-Jun Cao, Hong-Zhou Lu, Ai-Min Guo, Guo-Dong Wang. Hydrogen Embrittlement of Advanced High-Strength Steel for Automobile Application: A Review [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1144-1158. |
[6] | Boning Zhang, Yong Mao, Zhenbao Liu, Jianxiong Liang, Jun Zhang, Maoqiu Wang, Jie Su, Kun Shen. Ab Initio Investigations for the Role of Compositional Complexities in Affecting Hydrogen Trapping and Hydrogen Embrittlement: A Review [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1159-1172. |
[7] | Rongjian Shi, Yanqi Tu, Liang Yang, Saiyu Liu, Shani Yang, Kewei Gao, Xu-Sheng Yang, Xiaolu Pang. Interactions between Pre-strain and Dislocation Structures and Its Effect on the Hydrogen Trapping Behaviors [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1193-1202. |
[8] | Yue-Yang Gu, Han-Yu Zhao, Wei Chen, Wei Yan, Liang-Yin Xiong, De-Min Chen. Effects of Hydrogen Charging on Mechanical Properties of CLAM Steel at Different Strain Rates [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1203-1210. |
[9] | Shuang Ma, Junyu Zhang, Xudong Wang, Rie Y. Umetsu, Li Jiang, Wei Zhang, Man Yao. Structural Origins for Enhanced Thermal Stability and Glass-Forming Ability of Co-B Metallic Glasses with Y and Nb Addition [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 962-972. |
[10] | Ming Su, Xiaoguang Yuan, Chunyu Yue, Wentao Zheng, Yuxiang Wang, Jian Kang. Influence of Liquid Film Characteristics on Hot Cracking Initiation in Al-Cu Alloys at the End of Solidification [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 103-117. |
[11] | Minjie Wang, Jianghua Shen, Biao Chen, Umeda Junko, Katsuyoshi Kondoh, Yulong Li. Effect of CNTs on Activation Volume and Mobile Dislocation Exhaustion Rate of CNTs/Al under Compression Loading [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 127-132. |
[12] | Binhan Sun, Dong Wang, Xu Lu, Di Wan, Dirk Ponge, Xiancheng Zhang. Current Challenges and Opportunities Toward Understanding Hydrogen Embrittlement Mechanisms in Advanced High-Strength Steels: A Review [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 741-754. |
[13] | Honglin Yan, Zhiming Zhang, Jianqiu Wang, Bright O. Okonkwo, En-Hou Han. Effects of MeV Fe Ions Irradiation on the Microstructure and Property of Nuclear Grade 304 Stainless Steel: Characterized by Positron Annihilation Spectroscopy, Transmission Electron Microscope and Nanoindentation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(12): 1695-1703. |
[14] | Yong Xie, Zhixin Xia, Jixin Hou, Jiachao Xu, Peng Chen, Le Wan. Effect of Cu-Rich Phase Precipitation on the Microstructure and Mechanical Properties of CoCrNiCux Medium-Entropy Alloys Prepared via Laser Directed Energy Deposition [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1591-1600. |
[15] | Hai-Feng Zhang, Hai-Le Yan, Feng Fang, Nan Jia. Orientation-Dependent Mechanical Responses and Plastic Deformation Mechanisms of FeMnCoCrNi High-entropy Alloy: A Molecular Dynamics Study [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1511-1526. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||