Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (7): 1113-1122.DOI: 10.1007/s40195-022-01403-9
Previous Articles Next Articles
Bo Cheng1,2, Yunkai Li2, Xiaoxi Li2, Huibin Ke2, Liang Wang3, Tangqing Cao2, Di Wan4(), Benpeng Wang2(
), Yunfei Xue1,2
Received:
2021-12-28
Revised:
2022-01-14
Accepted:
2022-01-27
Online:
2023-07-10
Published:
2023-07-04
Contact:
Di Wan, Benpeng Wang
Bo Cheng, Yunkai Li, Xiaoxi Li, Huibin Ke, Liang Wang, Tangqing Cao, Di Wan, Benpeng Wang, Yunfei Xue. Solid-State Hydrogen Storage Properties of Ti-V-Nb-Cr High-Entropy Alloys and the Associated Effects of Transitional Metals (M = Mn, Fe, Ni)[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(7): 1113-1122.
Add to citation manager EndNote|Ris|BibTeX
Fig. 3 XRD patterns of Ti4V3NbCr2, Ti3V3Nb2Cr2 and Ti2V3Nb3Cr2 at initial as-cast state a and after hydrogen absorption b, respectively. Insets in a showing the element mapping using EDS of the arc-melted ingots
Alloys | VEC | Phase structure | Designed atom radius (Å) | Lattice parameters (Å) | Unit cell volume (Å3) |
---|---|---|---|---|---|
Ti4V3NbCr2 | 4.8 | BCC | 1.39 | 3.139 | 30.93 |
Ti3V3Nb2Cr2 | 4.9 | BCC | 1.39 | 3.135 | 30.81 |
Ti2V3Nb3Cr2 | 5 | BCC | 1.39 | 3.142 | 31.01 |
Table 1 Crystallographic data of Ti-V-Nb-Cr series alloys as designed
Alloys | VEC | Phase structure | Designed atom radius (Å) | Lattice parameters (Å) | Unit cell volume (Å3) |
---|---|---|---|---|---|
Ti4V3NbCr2 | 4.8 | BCC | 1.39 | 3.139 | 30.93 |
Ti3V3Nb2Cr2 | 4.9 | BCC | 1.39 | 3.135 | 30.81 |
Ti2V3Nb3Cr2 | 5 | BCC | 1.39 | 3.142 | 31.01 |
Fig. 4 a Hydrogen sorption kinetics of samples in the first cycle under 50 bar H2 at 300 K, b PCT curves of the alloy samples after 1st cycle hydrogen absorption/desorption at 323 K
Alloys | Structure | Maximum capacity (wt%) | H/M |
---|---|---|---|
Ti4V3NbCr2 | BCC | 3.7 | 2.01 |
Ti3V3Nb2Cr2 | BCC | 3.4 | 1.99 |
Ti2V3Nb3Cr2 | BCC | 3.2 | 2.02 |
V55Ti20.5Cr18.1Fe6.4 [ | BCC | 3.5 | 1.78 |
TiV1.1Mn0.9 [ | BCC | 2.99 | 1.53 |
Table 2 Hydrogen storage properties of alloys
Alloys | Structure | Maximum capacity (wt%) | H/M |
---|---|---|---|
Ti4V3NbCr2 | BCC | 3.7 | 2.01 |
Ti3V3Nb2Cr2 | BCC | 3.4 | 1.99 |
Ti2V3Nb3Cr2 | BCC | 3.2 | 2.02 |
V55Ti20.5Cr18.1Fe6.4 [ | BCC | 3.5 | 1.78 |
TiV1.1Mn0.9 [ | BCC | 2.99 | 1.53 |
Alloys | Phase | Ti | V | Nb | Cr | Mn | Fe | Ni |
---|---|---|---|---|---|---|---|---|
Ti4V3NbCr2Mn | BCC | 36.25 | 25.32 | 10.54 | 17.55 | 10.34 | - | - |
Secondary phase | 39.16 | 21.43 | 9.54 | 15.43 | 14.44 | - | - | |
Ti4V3NbCr2Fe | BCC | 35.57 | 26.01 | 11.11 | 18.35 | - | 8.97 | - |
Secondary phase | 37.83 | 14.48 | 7.2 | 13.69 | - | 26.81 | - | |
Ti4V3NbCr2Ni | BCC | 33.05 | 29.14 | 12.75 | 19.77 | - | - | 5.30 |
Secondary phase | 48.40 | 5.82 | 4.34 | 5.81 | - | - | 35.64 |
Table 3 Elemental distribution (at.%) of the Ti4V3NbCr2M (M = Mn, Fe, Ni) alloys
Alloys | Phase | Ti | V | Nb | Cr | Mn | Fe | Ni |
---|---|---|---|---|---|---|---|---|
Ti4V3NbCr2Mn | BCC | 36.25 | 25.32 | 10.54 | 17.55 | 10.34 | - | - |
Secondary phase | 39.16 | 21.43 | 9.54 | 15.43 | 14.44 | - | - | |
Ti4V3NbCr2Fe | BCC | 35.57 | 26.01 | 11.11 | 18.35 | - | 8.97 | - |
Secondary phase | 37.83 | 14.48 | 7.2 | 13.69 | - | 26.81 | - | |
Ti4V3NbCr2Ni | BCC | 33.05 | 29.14 | 12.75 | 19.77 | - | - | 5.30 |
Secondary phase | 48.40 | 5.82 | 4.34 | 5.81 | - | - | 35.64 |
Fig. 7 a Hydrogen sorption kinetics of Ti4V3NbCr2M (M = Mn, Fe, Ni) alloys, b PCT curves of the alloy samples after 1st cycle hydrogen absorption/desorption at 323 K, c DSC curves of hydrogenated alloys at 10 K/min heating rate
[1] | Q.W. Lai, Y.H. Sun, T. Wang, P. Modi, C. Cazorla, U. Demirci, J.R.A. Fernandez, F. Leardini, K.F. Aguey-Zinsou, Adv. Sust. Syst. 3, 1900043 (2019). |
[2] |
L. Schlapbach,Nature 460, 809 (2009).
DOI |
[3] |
G. Principi, F. Agresti, A. Maddalena, S.L. Russo, Energy 34, 2087 (2009).
DOI URL |
[4] |
K.L. Lim, H. Kazemian, Z. Yaakob, W.R.W. Daud, Chem. Eng. Technol. 33, 213 (2010).
DOI URL |
[5] |
J.W. Ren, H.W. Langmi, B.C. North, M. Mathe, Int. J. Energy Res. 39, 607 (2015).
DOI URL |
[6] |
N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. Okeeffe, O.M. Yaghi,Science 300, 1127 (2003).
DOI URL |
[7] |
A. Züttel, P. Sudan, Ph. Maurona, T. Kiyobayashi, Ch. Emmenegger, L. Schlapbach, Int. J. Hydrogen Energy 27, 203 (2002).
DOI URL |
[8] | M. Hirscher, M. Becher, M. Haluska, F.V. Zeppelin, X.H. Chen, U. Dettlaff-Weglikowska, S. Roth, J. Alloys Compd. 356, 433 (2003). |
[9] |
I.P. Jain, P. Jain, A. Jain, J. Alloys Compd. 503, 303 (2010).
DOI URL |
[10] | M.B. Ley, L.H. Jepsen, Y.S. Lee, Y.W. Cho, J.M.B.V. Colbe, M. Dornheim, M. Rokni, J.O. Jensen, M. Sloth, Y. Filinchuk, J.E. Jørgensen, F. Besenbacher, T.R. Jensen, Mater. Today 17, 122 (2014). |
[11] |
S.V. Alapati, J.K. Johnson, D.S. Sholl, J. Phys. Chem. B 110, 8769 (2006).
DOI URL |
[12] |
N.A.A. Rusman, M. Dahari, Int. J. Hydrogen Energy 41, 12108 (2016).
DOI URL |
[13] |
F. Marque, M. Balcerzak, F. Winkelmann, G. Zepon, M. Felderhoff, Energy Environ. Sci. 14, 5191 (2021).
DOI URL |
[14] |
S. Akrami, P. Edalati, M. Fuji, K. Edalati, Mater. Sci. Eng. R 146, 100644 (2021).
DOI URL |
[15] |
Y.F. Kao, S.K. Chen, J.H. Sheu, J.T. Lin, W.E. Lin, J.W. Yeh, S.J. Lin, T.H. Liou, C.W. Wang, Int. J. Hydrogen Energy 35, 9046 (2010).
DOI URL |
[16] |
S.K. Chen, P.H. Lee, H. Lee, H.T. Su, Mater. Chem. Phys. 210, 336 (2018).
DOI URL |
[17] |
P. Edalati, R. Floriano, A. Mohammadi, Y. Li, G. Zepon, H.W. Li, K. Edalati, Scr. Mater. 178, 387 (2020).
DOI URL |
[18] |
R. Floriano, G. Zepon, K. Edalati, A. Mohammadi, Int. J. Hydrogen Energy 45, 33759 (2020).
DOI URL |
[19] |
V. Zadorozhnyy, B. Sarac, E. Berdonosova, T. Karazehir, A. Lassnig, C. Gammer, M. Zadorozhnyy, S. Ketov, S. Klyamkin, J. Eckert,Int. J. Hydrogen Energy 45, 5347 (2020).
DOI URL |
[20] |
B. Sarac, V. Zadorozhnyy, E. Berdonosova, Y.P. Ivanov, S. Klyamkin, S. Gumrukcu, A.S. Sarac, A. Korol, D. Semenov, M. Zadorozhnyy, A. Sharma, A.L. Greer, J. Eckert, RSC Adv. 10, 24613 (2020).
DOI URL |
[21] |
I. Kunce, M. Polański, T. Czujko, Int. J. Hydrogen Energy 42, 27154 (2014).
DOI URL |
[22] |
J.D. Li, X.Q. Yu, H.J. Zhao, H.Y. Shao, Int. J. Hydrogen Energy 44, 29291 (2019).
DOI URL |
[23] |
M. Sahlberg, D. Karlsson, C. Zlotea, U. Jansson,Sci. Rep. 6, 1 (2016).
DOI |
[24] |
G. Mazzolai, B. Coluzzi, A. Biscarini, F.M. Mazzolai, A. Tuissi, F. Agresti, S. Lo Russo, A. Maddalena, P. Palade, G. Principi, J. Alloys Compd. 466, 133 (2008).
DOI URL |
[25] |
C.Y. Seo, J.H. Kim, P.S. Lee, J.Y. Lee, J. Alloys Compd. 348, 252 (2003).
DOI URL |
[26] |
C. Iwakur, W.K. Choi, R. Miyauchi, H. Inoue, J. Electrochem. Soc. 147, 2503 (2000).
DOI URL |
[27] |
D. Karlsson, G. Ek, J. Cedervall, C. Zlotea, K.T. Møller, T.C. Hansen, J. Bednarčík, M. Paskevicius, M.H. Sørby, T.R. Jensen, U. Jansson, M. Sahlberg, Inorg. Chem. 57, 2103 (2018).
DOI PMID |
[28] |
G. Ek, M.M. Nygård, A.F. Pavan, J. Montero, P.F. Henry, M.H. Sørby, M. Witman, V. Stavila, C. Zlotea, B.C. Hauback, M. Sahlberg, Inorg. Chem. 60, 1124 (2020).
DOI URL |
[29] |
M.M. Nygård, Ø.S. Fjellvåg, M.H. Sørby, K. Sakaki, K. Ikeda, J. Armstrong, P. Vajeeston, W.A. Sławiński, H. Kim, A. Machida, Y. Nakamura, B.C. Hauback, Acta Mater. 205, 116496 (2021).
DOI URL |
[30] |
J. Hu, J. Zhang, H. Xiao, L. Xie, H. Shen, P. Li, J. Zhang, H. Gong, X. Zu, Inorg. Chem. 59, 9774 (2020).
DOI URL |
[31] |
C. Zlotea, M.A. Sow, G. Ek, J.P. Couzinié, L. Perrière, I. Guillot, J. Bourgon, K.T. Møller, T.R. Jensen, E. Akiba, M. Sahlberg, J. Alloys Compd. 775, 667 (2018).
DOI URL |
[32] |
C. Zhang, A. Song, Y. Yuan, Y. Wu, P. Zhang, Z. Lu, X. Song, Int. J. Hydrogen Energy 45, 5367 (2020).
DOI URL |
[33] |
M.M. Nygård, G. Ek, D. Karlsson, M. Sahlberg, M.H. Sørby, B.C. Hauback, Int. J. Hydrogen Energy 44, 29140 (2019).
DOI URL |
[34] |
H. Shen, J. Zhang, J. Hu, J. Zhang, Y. Mao, H. Xiao, X. Zhou, X. Zu,Nanomaterials 9, 248 (2019).
DOI URL |
[35] |
X.Y. Chen, R.R. Chen, X. Ding, H.Z. Fang, X.Z. Li, H.S. Ding, Y.Q. Su, J.J. Guo, H.Z. Fu,Energy 166, 587 (2019).
DOI |
[36] |
S.W. Cho, C.S. Han, C.N. Park, E. Akiba, J. Alloys Compd. 288, 294 (1999).
DOI URL |
[37] |
P. Ruz, S. Banerjee, R. Halder, A. Kumar, V. Sudarsan, Int. J. Hydrogen Energy 42, 11482 (2017).
DOI URL |
[38] |
M.M. Nygård, G. Ek, D. Karlsson, M.H. Sørby, M. Sahlberg, B.C. Hauback, Acta Mater. 175, 121 (2019).
DOI URL |
[39] |
B.H. Silva, C. Zlotea, Y. Champion, W.J. Botta, G. Zepon,J. Alloys Compd. 865, 158767 (2021).
DOI URL |
[40] |
K. Sakaki, H.J. Kim, K. Asano, Y. Nakamura, J. Alloys Compd. 820, 153399(2020).
DOI URL |
[41] | K. Kubo, H. Itoh, T. Takahashi, T. Ebisawa, T. Kabutomori, Y. Nakamura, E. Akiba, J. Alloys Compd. 356, 452 (2003). |
[42] | M. Okada, T. Chou, A. Kamegawa, T. Tamura, H. Takamura, A. Matsukawa, S. Yamashita,J. Alloys Compd. 356, 480 (2003). |
[43] |
K. Young, J. Nei, D.F. Wong, L. Wang, Int. J. Hydrogen Energy 39, 21489 (2014).
DOI URL |
[44] |
S. Banerjee, A. Kumar, P. Ruz, P. Sengupta, Int. J. Hydrogen Energy 41, 18130 (2016).
DOI URL |
[45] |
R. Floriano, G. Zepon, K. Edalati, G.L.B.G. Fontana, A. Mohammadi, Z.L. Ma, H.W. Li, R.J. Contieri, Int. J. Hydrogen Energy 45, 33759 (2020).
DOI URL |
[46] | X.S. Huang, L.H. Liu, W.B. Liao, J.J. Huang, H.B. Sun, C.Y. Yu, Acta Metall. Sin. Engl. Lett. 34, 1546 (2021). |
[47] | C. Xiang, Z.M. Zhang, H.M. Fu, E.H. Han, J.Q. Wang, H.F. Zhang, G.D. Hu, Acta Metall. Sin. Engl. Lett. 32, 1053 (2019). |
[48] | J.L. Murray, in The Ti-V (Titanium-Vanadium) system, Phase Diagrams of Binary Titanium Alloys, ASM International (Metals Park, OH, 1987), pp. 319-27. |
[49] | Y.L. Xue, S.M. Li, H. Z, L.P. Li, H.Z. Fu, Acta Metall. Sin. Engl. Lett. 58, 514 (2015). |
[50] |
Y.W. Chen, Y.K. Li, X.W. Cheng, C. Wu, B. Cheng, Z.Q. Xu,Materials 11, 208 (2018).
DOI URL |
[51] |
A.L. Yonkeu, I.P. Swainson, J. Dufour, J. Huot,J. Alloys Compd. 460, 559 (2008).
DOI URL |
[52] | H. Liang, Y.G. Chen, Y.G. Yan, C.L. Wu, M.D. Tao, M.J. Tu, Rare Metal Mater Eng. 35, 1375 (2006). |
[53] | G. Ek, Ø.S. Fjellvåg, P. Vajeeston, J. Armstrong, M. Sahlberg, U. Häussermann, J. Alloys Compd. 887, 160320(2019). |
[54] |
C. Zhang, Y. Wu, L. You, X.Z. Cao, Z.P. Lu, X.P. Song, J. Alloys Compd. 781, 613 (2019).
DOI URL |
[55] |
M. Kitada, J Japan Inst Met. 41, 412 (1977).
DOI URL |
[56] |
M. Martin, C. Gommel, C. Borkhart, E. Fromm, J. Alloys Compd. 238, 193 (1996).
DOI URL |
[57] |
E. Téliz, M. Abboud, R. Faccio, M. Esteves, F. Zinola, V. Díaz, J. Electroanal. Chem. 879, 114781 (2020).
DOI URL |
[58] |
P. Ruz, V. Sudarsan, J. Alloys Compd. 627, 123(2015).
DOI URL |
[59] |
T.I. Bratanich, S.M. Solonin, V.V. Skorokhod, Int. J. Hydrogen Energy 20, 353 (1995).
DOI URL |
[60] |
Y.G. Yao, Z.N. Huang, P.F. Xie, S.D. Lacey, R.J. Jacob, H. Xie, F.J. Chen, A.M. Nie, T.C. Pu, M. Rehwoldt, D.W. Yu, M.R. Zachariah, C. Wang, R.S. Yassar, J. Li, L.B. Hu,Science 359, 1489 (2018).
DOI URL |
[61] |
J. Montero, G. Ek, L. Laversenne, V. Nassif, G. Zepon, M. Sahlberg, C. Zlotea,J. Alloys Compd. 835, 155376 (2020).
DOI URL |
[62] |
H. Shen, J. Hu, P. Li, G. Huang, J. Zhang, J. Zhang, Y. Mao, H. Xiao, X. Zhou, X. Zu, X. Long, S. Peng, J. Mater. Sci. Technol. 55, 116 (2020).
DOI URL |
[63] | S. Fujitani, I. Yonezu, T. Saito, N. Furukawa, E. Akiba, H. Hayakawa, S. Ono, J. Less-Common Met. 172, 220 (1991). |
[64] |
H.Z. Hu, C.M. Ma, Q.J. Chen, J. Alloys Compd. 877, 160315 (2021).
DOI URL |
[65] |
S. Kumar, A. Jain, T. Ichikawa, Y. Kojima, G.K. Dey, Renew. Sustain. Energy Rev. 72, 791 (2017).
DOI URL |
[66] |
T. Matumura, H. Yukawa, M. Morinaga, J. Alloys Compd. 284, 82 (1999).
DOI URL |
[67] |
M. Ismail, M.S. Yahya, N.A. Sazelee, N.A. Ali, F.A. HalimYap, N.S. Mustafa, J. Magnes. Alloy. 8, 832 (2020).
DOI URL |
[68] |
W. Zhang, P.K. Liaw, Y. Zhang, Sci. China Mater. 61, 2 (2018).
DOI URL |
[1] | Wenhao Fan, Jianxun Zhao, Dayong Liu, Qingcheng Liang, Wanqiang Liu, Qingshuang Wang, Heng Liu, Peng Chen, Shang Gao, Xinlong Bao, Yong Cheng, Xinwei Wang, Xin Guo. Effect of Nitrogen and Sulfur Co-Doped Graphene on the Electrochemical Hydrogen Storage Performance of Co0.9Cu0.1Si Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 1023-1037. |
[2] | Shougang Duan, Qian Zhang, Wenxuan Li, Yong Dong, Beibei Jiang, Shichao Liu, Chuanqiang Li, Zhengrong Zhang. Effects of V Addition on Microstructural Evolution and Mechanical Properties of AlCrFe2Ni2 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 391-404. |
[3] | Xue Yin, Yan-Kun Dou, Xin-Fu He, Ke Jin, Cheng-Long Wang, Ya-Guang Dong, Cun-Yong Wang, Yun-Fei Xue, Wen Yang. Effects of Nb Addition on Charpy Impact Properties of TiVTa Refractory High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 405-416. |
[4] | Zhu Wang, Guo-Hui Zhang, Yong Yao, Xue-Hua Fan, Jie Jin, Lei Zhang, Yan-Xia Du. Corrosion Behaviour of a Non-equiatomic CoCrFeNiMo High-Entropy Alloy in H2S-Containing and H2S-Free Environments [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 366-378. |
[5] | Xing-Jiang Hua, Ping Hu, Hai-Rui Xing, Jia-Yu Han, Song-Wei Ge, Shi-Lei Li, Chao-Jun He, Kuai-She Wang, Chun-Juan Cui. Development and Property Tuning of Refractory High-Entropy Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1231-1265. |
[6] | Kai Wang, Zhenjiang Wang, Jinling Lu, Zhijun Wang, Wei Wang, Xingqi Luo. Erosion Behavior of NiCoCrFeNb0.45 Eutectic High-Entropy Alloy in Liquid-Solid Two-Phase Flow [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1266-1274. |
[7] | Peng Peng, Shengyuan Li, Weiqi Chen, Yuanli Xu, Xudong Zhang, Zhikun Ma, Jiatai Wang. Phase Selection and Microhardness of Directionally Solidified AlCoCrFeNi2.1 Eutectic High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1281-1290. |
[8] | Hao Gu, Zhide Li, Kaiguang Luo, Laxman Bhatta, Hanqing Xiong, Yun Zhang, Charlie Kong, Hailiang Yu. Enhanced Mechanical Properties of AA5083 Matrix Composite via Introducing Al0.5CoCrFeNi Particles and Cryorolling [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 879-889. |
[9] | Zishu Chai, Kexuan Zhou, Qingfeng Wu, Zhijun Wang, Quan Xu, Junjie Li, Jincheng Wang. Deformation Behaviors of an Additive-Manufactured Ni32Co30Cr10Fe10Al18 Eutectic High Entropy Alloy at Ambient and Elevated Temperatures [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1607-1616. |
[10] | Huan Li, Shuai Zeng, Yong-Kang Zhou, Hai-Long Li, Hong-Wei Zhang, Hai-Feng Zhang, Zheng-Wang Zhu. High Tensile Strength and Superelasticity of Directionally Solidified Ti30Ni30Fe10Hf10Nb20 Eutectic High Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1583-1590. |
[11] | Yao Yan, Wei-Dong Song, Ke-Feng Li, Kang Zhao, Tong-Tong Sun, Kai-Kai Song, Jian-Hong Gong, Li-Na Hu. Microstructural Features and Mechanical Behaviors of Al0.5Cr0.8CoFeNi2.5V0.2 High-Entropy Alloys Fabricated by Selective Laser Melting Technique [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1591-1606. |
[12] | Shaofan Ge, Shifeng Lin, Huameng Fu, Long Zhang, Tieqiang Geng, Zhengwang Zhu, Zhengkun Li, Hong Li, Aimin Wang, Hongwei Zhang, Haifeng Zhang. High-temperature Mechanical Properties and Dynamic Recrystallization Mechanism of in situ Silicide-reinforced MoNbTaTiVSi Refractory High-entropy Alloy Composite [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1617-1630. |
[13] | Fengqi Zhang, Chao Xiang, En-Hou Han, Zijian Zhang. Effect of Nb Content on Microstructure and Mechanical Properties of Mo0.25V0.25Ti1.5Zr0.5Nbx High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1641-1652. |
[14] | Shenghui Xie, Xiang Liao, Xierong Zeng, Haipeng Yang, Liang He. An Iron-Based High-Entropy Alloy with Highly Efficient Degradation for p-Nitrophenol [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1653-1664. |
[15] | Xuan Huang, Yong Dong, Shaomu Lu, Chuanqiang Li, Zhengrong Zhang. Effects of Homogenized Treatment on Microstructure and Mechanical Properties of AlCoCrFeNi2.2 Near-Eutectic High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1079-1086. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||