Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (11): 1503-1510.DOI: 10.1007/s40195-021-01268-4
Previous Articles Next Articles
Xiaomeng Qin1, Chan Hung Shek1()
Received:
2021-03-08
Revised:
2021-03-25
Accepted:
2021-04-06
Online:
2021-11-10
Published:
2021-06-18
Contact:
Chan Hung Shek
About author:
Chan Hung Shek, apchshek@cityu.edu.hkXiaomeng Qin, Chan Hung Shek. Heterogeneous Structure Design to Strengthen Carbon-Containing CoCrFeNi High Entropy Alloy[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1503-1510.
Add to citation manager EndNote|Ris|BibTeX
Cr | Fe | Co | Ni | C | |
---|---|---|---|---|---|
Nominal composition | 24.85 | 24.85 | 24.85 | 24.85 | 0.60 |
Measured composition | 25.48 | 24.34 | 24.68 | 24.94 | 0.56 |
Table 1 Chemical composition of the investigated high entropy alloy (at.%)
Cr | Fe | Co | Ni | C | |
---|---|---|---|---|---|
Nominal composition | 24.85 | 24.85 | 24.85 | 24.85 | 0.60 |
Measured composition | 25.48 | 24.34 | 24.68 | 24.94 | 0.56 |
Fig. 2 a-c Microstructures of the as-cast HEA: a EBSD band contrast image; b EBSD inverse pole figure (IPF) map; c TEM bright-field image and the corresponding SAED patterns. d XRD patterns of the as-cast and annealed alloys
Fig. 3 Microstructures of the annealed HEA via (a-e) EBSD and f-g SEM: a forward scatter detector figure; b band contrast image; c IPF map; d grain size distribution; e enlarged view of region E in (b); f SEM image showing the distribution of precipitates and g the corresponding EDS elemental maps. RD is corresponding to the cold-rolling direction
Fig. 4 TEM /HRTEM /STEM micrographs of the annealed HEA: a, b TEM images showing the morphologies of precipitates and fine grains; c corresponding SAED patterns of the matrix (Region A in (a)); d TEM image and corresponding SAED patterns of the tiny precipitates (Region C in (d)); e HRTEM micrograph of the tiny precipitates; f corresponding SAED pattern of the coarse precipitates (Region B in (b)); g STEM mapping of the tiny precipitates. Coarse and tiny precipitates are marked by arrows and circles, respectively
Fig. 5 Mechanical behaviors of the as-cast and annealed carbon-containing HEAs: a engineering stress-strain curves; b LUR stress-strain curves; c enlarged Hysteresis loops; d estimated back stress versus true strain
Alloy | Lattice constant | Average grain | Carbides fraction (%) | Carbides diameter (nm) | ||
---|---|---|---|---|---|---|
a0 (Å) | size (μm) | Coarse | Tiny | Coarse | Tiny | |
As-cast | 3.573 | 63.1 | - | - | - | |
Annealed | 3.569 | 1.4 | 4.7 | 1 | 600 | 50 |
Table 2 Parameters for calculating the yield strength increment in Eqs. (2) and (3)
Alloy | Lattice constant | Average grain | Carbides fraction (%) | Carbides diameter (nm) | ||
---|---|---|---|---|---|---|
a0 (Å) | size (μm) | Coarse | Tiny | Coarse | Tiny | |
As-cast | 3.573 | 63.1 | - | - | - | |
Annealed | 3.569 | 1.4 | 4.7 | 1 | 600 | 50 |
Fig. 6 Microstructural characterization of the carbon-containing HEAs after tensile tests: a fractured tensile specimens; b,c fracture morphology of the investigated alloys; d sample surface of the as-cast alloy showing the slip bands; e IPF map and f GOS map of the sample surface of the annealed alloy by EBSD; g bright-field TEM image and corresponding SAED patterns (the inset) showing the substructures of the as-cast alloy (diffraction spots circled in yellow corresponding to the deformation twins); h,i bright-field TEM images showing the substructures and carbides in the annealed alloy. GB, DTs and DCs are corresponding to grain boundary, deformation twins and dislocation cells, respectively. Coarse and tiny precipitates are marked by red arrows and circles, respectively
[1] | B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375, 213 (2004) |
[2] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004)
DOI URL |
[3] |
M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, J.W. Yeh, Acta Mater. 59, 6308 (2011)
DOI URL |
[4] |
C.E. Slone, J. Miao, E.P. George, M.J. Mills, Acta Mater. 165, 496 (2019)
DOI |
[5] |
J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater. 102, 187 (2016)
DOI URL |
[6] |
B. Gorr, M. Azim, H.J. Christ, T. Mueller, D. Schliephake, M. Heilmaier, J. Alloys Compd. 624, 270 (2015)
DOI URL |
[7] |
M. Zhang, Y. Ma, W. Dong, X. Liu, Y. Lu, Y. Zhang, R. Li, Y. Wang, P. Yu, Y. Gao, G. Li, Mater. Sci. Eng. A 771, 138566 (2020)
DOI URL |
[8] |
S. Yoshida, T. Ikeuchi, T. Bhattacharjee, Y. Bai, A. Shibata, N. Tsuji, Acta Mater. 171, 201 (2019)
DOI |
[9] |
Z. Wu, H. Bei, G.M. Pharr, E.P. George, Acta Mater. 81, 428 (2014)
DOI URL |
[10] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345, 1153 (2014)
DOI PMID |
[11] |
Z. Wu, H. Bei, F. Otto, G.M. Pharr, E.P. George, Intermetallics 46, 131 (2014)
DOI URL |
[12] |
D.B. Miracle, O.N. Senkov, Acta Mater. 122, 448 (2017)
DOI URL |
[13] |
F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61, 5743 (2013)
DOI URL |
[14] |
H. Shahmir, J. He, Z. Lu, M. Kawasaki, T.G. Langdon, Mater. Sci. Eng. A 676, 294 (2016)
DOI URL |
[15] |
T. Yang, Y. Zhao, Y. Tong, Z. Jiao, J. Wei, J. Cai, X. Han, D. Chen, A. Hu, J. Kai, Science 362, 933 (2018)
DOI PMID |
[16] |
J.Y. He, H. Wang, Y. Wu, X.J. Liu, H.H. Mao, T.G. Nieh, Z.P. Lu, Intermetallics 79, 41 (2016)
DOI URL |
[17] |
B. Gwalani, V. Soni, M. Lee, S.A. Mantri, Y. Ren, R. Banerjee, Mater. Des. 121, 254 (2017)
DOI URL |
[18] |
Y. Tong, D. Chen, B. Han, J. Wang, R. Feng, T. Yang, C. Zhao, Y.L. Zhao, W. Guo, Y. Shimizu, C.T. Liu, P.K. Liaw, K. Inoue, Y. Nagai, A. Hu, J.J. Kai, Acta Mater. 165, 228 (2019)
DOI |
[19] | N. Li, C.L. Jia, Z.W. Wang, L.H. Wu, D.R. Ni, Z.K. Li, H.M. Fu, P. Xue, B.L. Xiao, Z.Y. Ma, Acta Metall. Sin.-Engl. Lett. 33, 947 (2020) |
[20] | I. Ondicho, B. Alunda, D. Owino, L. Otieno, M. Chepkoech, Acta Metall. Sin.-Engl. Lett. 33, 1159 (2020) |
[21] |
M. Yang, D. Yan, F. Yuan, P. Jiang, E. Ma, X. Wu, Proc. Nat. Acad. Sci. 115, 7224 (2018)
DOI URL |
[22] |
T. Xiong, S. Zheng, J. Pang, X. Ma, Scr. Mater. 186, 336 (2020)
DOI URL |
[23] |
S.W. Wu, G. Wang, Q. Wang, Y.D. Jia, J. Yi, Q.J. Zhai, J.B. Liu, B.A. Sun, H.J. Chu, J. Shen, P.K. Liaw, C.T. Liu, T.Y. Zhang, Acta Mater. 165, 444 (2019)
DOI |
[24] | M. Song, R. Zhou, J. Gu, Z.W. Wang, S. Ni, Y. Liu, Appl. Mater. Today 18, 6 (2020) |
[25] |
R.B. Chang, W. Fang, H.Y. Yu, X. Bai, X. Zhang, B.X. Liu, F.X. Yin, Scr. Mater. 172, 144 (2019)
DOI URL |
[26] | M. Klimova, D. Shaysultanov, A. Semenyuk, S. Zherebtsov, N. Stepanov, J. Alloys Compd. 851, 14 (2021) |
[27] |
F. Humphreys, P. Kalu, Acta Metall. 35, 2815 (1987)
DOI URL |
[28] | Y.T. Wang, J.B. Li, Y.C. Xin, X.H. Chen, M. Rashad, B. Liu, Y. Liu, Acta Metall. Sin.-Engl. Lett. 32, 932 (2019) |
[29] | M.V. Klimova, D.G. Shaysultanov, R.S. Chernichenko, V.N. Sanin, N.D. Stepanov, S.V. Zherebtsov, A.N. Belyakov, Mater. Sci. Eng. A 740, 201 (2019) |
[30] |
T. Gladman, Mater. Sci. Technol. 15, 30 (1999)
DOI URL |
[31] |
X. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang, Y. Zhu, Proc. Nat. Acad. Sci. 112, 14501 (2015)
DOI URL |
[32] |
X. Wu, Y. Zhu, Mater. Res. Lett. 5, 527 (2017)
DOI URL |
[33] | F.L. Jiang, C.C. Zhao, D.S. Liang, W.W. Zhu, Y.W. Zhang, S. Pan, F.Z. Ren, Mater. Sci. Eng. A 771, 6 (2020) |
[34] |
M. Yang, Y. Pan, F. Yuan, Y. Zhu, X. Wu, Mater. Res. Lett. 4, 145 (2016)
DOI URL |
[35] |
E. Ma, T. Zhu, Mater. Today 20, 323 (2017)
DOI URL |
[36] |
A.V. Panin, M.S. Kazachenok, A.I. Kozelskaya, R.R. Hairullin, E.A. Sinyakova, Mater. Sci. Eng. A 647, 43 (2015)
DOI URL |
[37] |
M.R. Stoudt, J.B. Hubbard, Acta Mater. 53, 4293 (2005)
DOI URL |
[38] |
M.R. Stoudt, L.E. Levine, A. Creuziger, J.B. Hubbard, Mater. Sci. Eng. A 530, 107 (2011)
DOI URL |
[39] |
K. Lu, L. Lu, S. Suresh, Science 324, 349 (2009)
DOI PMID |
[1] | Mehran Dadkhah, Mohammad Hossein Mosallanejad, Luca Iuliano, Abdollah Saboori. A Comprehensive Overview on the Latest Progress in the Additive Manufacturing of Metal Matrix Composites: Potential, Challenges, and Feasible Solutions [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1173-1200. |
[2] | Guoliang Ma, Yong Zhao, Hongzhi Cui, Xiaojie Song, Mingliang Wang, Kwangmin Lee, Xiaohua Gao, Qiang Song, Canming Wang. Addition Al and/or Ti Induced Modifications of Microstructures, Mechanical Properties, and Corrosion Properties in CoCrFeNi High-Entropy Alloy Coatings [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1087-1102. |
[3] | Jiafen Song, Zishu Chai, Jian Zheng, Qingfeng Wu, Feng He, Zenan Yang, Junjie Li, Jincheng Wang, Haiou Yang, Zhijun Wang. Design Fe-based Eutectic Medium-Entropy Alloys Fe2NiCrNbx [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1103-1108. |
[4] | Y. D. Liu, J. H. Liu, W. S. Gu, H. L. Li, W. H. Li, Z. L. Pei, J. Gong, C. Sun. Oxidation, Mechanical and Tribological Behaviors of the Ni/cBN Abrasive Coating-Coated Titanium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 1007-1020. |
[5] | B. Mehdi, R. Badji, V. Ji, B. Alili, D. Bradai, W. Bedjaoui, F. Deschaux-Beaume, F. Brisset. Unveiling the Residual Stresses, Local Micromechanical Properties and Crystallographic Texture in a Ti-6Al-4V Weld Joint [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 997-1006. |
[6] | Dong Wu, Shitong Wei, Shanping Lu. A Study of Microstructure and Mechanical Properties for the Autogenous Single-Pass Butt Weldment of a Ferritic/Martensitic Steel Using Gas Tungsten Arc Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 628-638. |
[7] | Hui Xiao, Yu Liu, Kai Wang, Zhipeng Wang, Te Hu, Touwen Fan, Li Ma, Pingying Tang. Effects of Mn Content on Mechanical Properties of FeCoCrNiMnx (0≤x≤0.3) High-Entropy Alloys: A First-Principles Study [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 455-464. |
[8] | Ibrahim Ondicho, Bernard Alunda, Fredrick Madaraka, Melody Chepkoech. Effect of Bimodal Grain Size Distribution on the Strain Hardening Behavior of a Medium-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 465-475. |
[9] | Jinsen Tian, Jiang Ma, Ming Yan, Zhuo Chen, Jun Shen, Jing Wu. Orientation Dependence of the Micro-Pillar Compression Strength in an Electron Beam Melted Ti-6Al-4V Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 476-484. |
[10] | Hua-Zhen Jiang, Zheng-Yang Li, Tao Feng, Peng-Yue Wu, Qi-Sheng Chen, Yun-Long Feng, Long-Fei Chen, Jing-Yu Hou, He-Jian Xu. Effect of Process Parameters on Defects, Melt Pool Shape, Microstructure, and Tensile Behavior of 316L Stainless Steel Produced by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 495-510. |
[11] | Chun-Hua Ma, Fu-Sheng Pan, Ding-Fei Zhang, Ai-Tao Tang, Zhi-Wen Lu. Effects of Sb Addition on Microstructural Evolution and Mechanical Properties of Mg-9Al-5Sn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 278-288. |
[12] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. |
[13] | Xiusong Huang, Lehua Liu, Weibing Liao, Jianjun Huang, Huibin Sun, Chunyan Yu. Characterization of Nucleation Behavior in Temperature-Induced BCC-to-HCP Phase Transformation for High Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1546-1556. |
[14] | Hui Jiang, Li Li, Rui Wang, Kaiming Han, Quanwei Wang. Effects of Chromium on the Microstructures and Mechanical Properties of AlCoCrxFeNi2.1 Eutectic High Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1565-1573. |
[15] | Yixing Wan, Jinyong Mo, Xin Wang, Zhibin Zhang, Baolong Shen, Xiubing Liang. Mechanical Properties and Phase Stability of WTaMoNbTi Refractory High-Entropy Alloy at Elevated Temperatures [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1585-1590. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||