Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (8): 1087-1102.DOI: 10.1007/s40195-021-01219-z
Previous Articles Next Articles
					
													Guoliang Ma1, Yong Zhao1, Hongzhi Cui1( ), Xiaojie Song1, Mingliang Wang1,2, Kwangmin Lee3, Xiaohua Gao1, Qiang Song1, Canming Wang1
), Xiaojie Song1, Mingliang Wang1,2, Kwangmin Lee3, Xiaohua Gao1, Qiang Song1, Canming Wang1
												  
						
						
						
					
				
Received:2020-07-11
															
							
																	Revised:2020-11-26
															
							
																	Accepted:2020-12-21
															
							
																	Online:2021-04-17
															
							
																	Published:2021-08-10
															
						Contact:
								Hongzhi Cui   
													About author:Hongzhi Cui,cuihongzhi1965@163.comGuoliang Ma, Yong Zhao, Hongzhi Cui, Xiaojie Song, Mingliang Wang, Kwangmin Lee, Xiaohua Gao, Qiang Song, Canming Wang. Addition Al and/or Ti Induced Modifications of Microstructures, Mechanical Properties, and Corrosion Properties in CoCrFeNi High-Entropy Alloy Coatings[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1087-1102.
Add to citation manager EndNote|Ris|BibTeX
| Laser power (kW) | Spot diameter (mm) | Scanning speed (mm s-1) | Overlapping ratio (%) | 
|---|---|---|---|
| 1.2 | 3 | 7 | 30 | 
Table 1 Laser cladding parameters
| Laser power (kW) | Spot diameter (mm) | Scanning speed (mm s-1) | Overlapping ratio (%) | 
|---|---|---|---|
| 1.2 | 3 | 7 | 30 | 
| Alloys | \({T}_{\mathrm{m}}\) | \(\Delta {S}_{\mathrm{mix}}\)(J/mol K) | \(\Delta {H}_{\mathrm{mix}}\)(kJ/mol) | Ω | δ (%) | VEC | 
|---|---|---|---|---|---|---|
| AlCoCrFeNi (I) | 1401.2 | 13.38 | -12.32 | 1.52 | 5.44 | 7.20 | 
| CoCrFeNiTi0.5 (II) | 1595.5 | 13.15 | -11.56 | 1.81 | 5.09 | 7.78 | 
| AlCoCrFeNiTi0.5 (III) | 1425.5 | 14.70 | -17.92 | 1.16 | 6.32 | 6.91 | 
Table 2 Physical parameters of AlCoCrFeNi (I), CoCrFeNiTi0.5 (II) and AlCoCrFeNiTi0.5 (III) coatings
| Alloys | \({T}_{\mathrm{m}}\) | \(\Delta {S}_{\mathrm{mix}}\)(J/mol K) | \(\Delta {H}_{\mathrm{mix}}\)(kJ/mol) | Ω | δ (%) | VEC | 
|---|---|---|---|---|---|---|
| AlCoCrFeNi (I) | 1401.2 | 13.38 | -12.32 | 1.52 | 5.44 | 7.20 | 
| CoCrFeNiTi0.5 (II) | 1595.5 | 13.15 | -11.56 | 1.81 | 5.09 | 7.78 | 
| AlCoCrFeNiTi0.5 (III) | 1425.5 | 14.70 | -17.92 | 1.16 | 6.32 | 6.91 | 
 
																													Fig. 3 Cross-sectional microstructures of coatings: a AlCoCrFeNi (I), b CoCrFeNiTi0.5 (II), c AlCoCrFeNiTi0.5 (III) along the compositional line scanning profiles of different elements
| Alloys | Region | Elements (at.%) | |||||
|---|---|---|---|---|---|---|---|
| Al | Co | Cr | Fe | Ni | Ti | ||
| AlCoCrFeNi (I) | DR | 18.34 | 16.66 | 15.94 | 31.30 | 18.06 | - | 
| ID | 9.76 | 17.93 | 18.95 | 35.64 | 17.72 | - | |
| CoCrFeNiTi0.5 (II) | DR | - | 18.98 | 19.90 | 39.14 | 16.64 | 5.33 | 
| ID-A | - | 18.30 | 18.71 | 33.72 | 17.11 | 12.16 | |
| ID-B | - | 18.68 | 11.40 | 27.50 | 20.29 | 22.13 | |
| AlCoCrFeNiTi0.5 (III) | DR | 13.15 | 14.70 | 10.21 | 35.51 | 16.41 | 10.02 | 
| ID | 10.70 | 14.06 | 15.64 | 40.56 | 12.80 | 6.72 | |
Table 3 Chemical compositions (at.%) of AlCoCrFeNi (I), CoCrFeNiTi0.5 (II) and AlCoCrFeNiTi0.5 (III) coatings
| Alloys | Region | Elements (at.%) | |||||
|---|---|---|---|---|---|---|---|
| Al | Co | Cr | Fe | Ni | Ti | ||
| AlCoCrFeNi (I) | DR | 18.34 | 16.66 | 15.94 | 31.30 | 18.06 | - | 
| ID | 9.76 | 17.93 | 18.95 | 35.64 | 17.72 | - | |
| CoCrFeNiTi0.5 (II) | DR | - | 18.98 | 19.90 | 39.14 | 16.64 | 5.33 | 
| ID-A | - | 18.30 | 18.71 | 33.72 | 17.11 | 12.16 | |
| ID-B | - | 18.68 | 11.40 | 27.50 | 20.29 | 22.13 | |
| AlCoCrFeNiTi0.5 (III) | DR | 13.15 | 14.70 | 10.21 | 35.51 | 16.41 | 10.02 | 
| ID | 10.70 | 14.06 | 15.64 | 40.56 | 12.80 | 6.72 | |
 
																													Fig. 5 a Bright-field (BF) TEM images of AlCoCrFeNiTi0.5 (III) coating, b magnified TEM images of the DR region, c, d SAED patterns of dendrites and interdendrites, respectively
 
																													Fig. 6 a TEM images of AlCoCrFeNiTi0.5 (III) coating and corresponding TEM-EDS mappings of (a1) Al, (a2) Co, (a3) Cr, (a4) Fe, (a5) Ni and (a6) Ti elements. b-d TEM-EDS point analysis of different regions as marked in Fig. 5a, b, respectively
 
																													Fig. 7 a Cross-sectional, b surface microhardness of AlCoCrFeNi (I), CoCrFeNiTi0.5 (II), AlCoCrFeNiTi0.5 (III) coatings. c Nanoindentation load-depth curves within DR and ID regions of AlCoCrFeNiTi0.5 (III) coating. d Average nanohardness and elastic modulus of different regions in the AlCoCrFeNiTi0.5 coating
| Alloys | Ecorr (VSCE) | Icorr (A cm-2) | Epit (VSCE) | Epit-Ecorr (VSCE) | 
|---|---|---|---|---|
| AlCoCrFeNi (I) | -0.291 | 6.250 × 10-6 | - 0.215 | 0.076 | 
| CoCrFeNiTi0.5 (II) | -0.372 | 1.080 × 10-5 | - 0.015 | 0.357 | 
| AlCoCrFeNiTi0.5 (III) | -0.185 | 1.017 × 10-7 | 0.098 | 0.283 | 
Table 4 Electrochemical parameters of three HEA coatings in 3.5 wt% NaCl solution at room temperature
| Alloys | Ecorr (VSCE) | Icorr (A cm-2) | Epit (VSCE) | Epit-Ecorr (VSCE) | 
|---|---|---|---|---|
| AlCoCrFeNi (I) | -0.291 | 6.250 × 10-6 | - 0.215 | 0.076 | 
| CoCrFeNiTi0.5 (II) | -0.372 | 1.080 × 10-5 | - 0.015 | 0.357 | 
| AlCoCrFeNiTi0.5 (III) | -0.185 | 1.017 × 10-7 | 0.098 | 0.283 | 
 
																													Fig. 9 Corrosion properties of CoCrFeNiTi0.5 (II) and AlCoCrFeNiTi0.5 (III) HEA coatings alongside some of the alloys reported in the references in 3.5 wt% NaCl solution at room temperature
 
																													Fig. 10 a, b Nyquist and Bode plots of AlCoCrFeNi (I), CoCrFeNiTi0.5 (II), AlCoCrFeNiTi0.5 (III) coatings in the 3.5 wt% NaCl solution at room temperature, respectively. c Equivalent circuit for fitting the EIS data of three coatings
| Alloys | Rs (Ω cm2) | Rp (Ω cm2) | Rct (Ω cm2) | CPE1 parameters | CPE2 parameters | ||
|---|---|---|---|---|---|---|---|
| Y1 (µF/cm2) | n1 | Y2 (µF/cm2) | n2 | ||||
| AlCoCrFeNi (I) | 12.08 | 3.28 × 104 | 1.29 × 104 | 55.06 | 0.87 | 48.49 | 0.82 | 
| CoCrFeNiTi0.5 (II) | 11.70 | 5.79 × 103 | 8.45 × 103 | 80.47 | 0.85 | 45.73 | 0.79 | 
| AlCoCrFeNiTi0.5 (III) | 12.91 | 4.07 × 105 | 2.81 × 106 | 6.57 | 0.80 | 3.57 | 0.80 | 
Table 5 Equivalent circuit parameters obtained by fitting the EIS results of three coatings in 3.5 wt% NaCl solution at room temperature
| Alloys | Rs (Ω cm2) | Rp (Ω cm2) | Rct (Ω cm2) | CPE1 parameters | CPE2 parameters | ||
|---|---|---|---|---|---|---|---|
| Y1 (µF/cm2) | n1 | Y2 (µF/cm2) | n2 | ||||
| AlCoCrFeNi (I) | 12.08 | 3.28 × 104 | 1.29 × 104 | 55.06 | 0.87 | 48.49 | 0.82 | 
| CoCrFeNiTi0.5 (II) | 11.70 | 5.79 × 103 | 8.45 × 103 | 80.47 | 0.85 | 45.73 | 0.79 | 
| AlCoCrFeNiTi0.5 (III) | 12.91 | 4.07 × 105 | 2.81 × 106 | 6.57 | 0.80 | 3.57 | 0.80 | 
 
																													Fig. 11 Corrosion morphologies for the coatings: a AlCoCrFeNi (I), b CoCrFeNiTi0.5 (II), c, d AlCoCrFeNiTi0.5 (III) after electrochemical tests in the 3.5 wt% NaCl solution at room temperature
 
																													Fig. 12 a-g XPS spectra of Al, Co, Cr, Fe, Ni, Ti and O elements of the passive films on the Alloy (I): AlCoCrFeNi, Alloy (II): CoCrFeNiTi0.5 and Alloy (III): AlCoCrFeNiTi0.5 coatings, respectively. h Schematic illustration of pitting corrosion process of HEA coatings
| [1] | B. Cantor,I.T.H. Chang,P. Knight,A.J.B. Vincent,Mater. Sci. Eng.A 375-377, 213(2004) | 
| [2] | J.W. Yeh,S.Y. Chang,Y.D. Hong,S.K. Chen,S.J. Lin,Mater. Chem. Phys.103, 41(2007) DOI URL | 
| [3] | Y. Zhang,T.T. Zuo,Z. Tang,M.C. Gao,K.A. Dahmen,P.K. Liaw,Z.P. Lu,Prog. Mater. Sci.61, 1(2014) DOI URL | 
| [4] | D. Ma,M. Yao,K.G. Pradeep,C.C. Tasan,H. Springer,D. Raabe,Acta Mater.98, 288(2015) DOI URL | 
| [5] | X. Yang,Y. Zhang,Mater. Chem. Phys132, 233(2012) | 
| [6] | M.G. Poletti,L. Battezzati,Acta Mater.75, 297(2014) DOI URL | 
| [7] | S. Guo,C. Ng,J. Lu,C.T. Liu,J. Appl. Phys.109, 103505(2011) DOI URL | 
| [8] | P. Cui,Y. Ma,L. Zhang,M. Zhang,J. Fan,W. Dong,Mater. Sci. Eng. A737, 198(2018) | 
| [9] | P. Cui,Y. Ma,L. Zhang,M. Zhang,J. Fan,W. Dong,Mater. Sci. Eng. A731, 124(2018) | 
| [10] | Y. Dong,Y. Lu,L. Jiang,T. Wang,T. Li,Intermetallics52, 105(2014) | 
| [11] | N. Yurchenko,N. Stepanov,G. Salishchev,Mater. Sci. Technol.33, 17(2016) DOI URL | 
| [12] | Y.F. Juan,J. Zhang,Y.B. Dai,Q. Dong,Y.F. Han,Acta Metall. Sin. -Engl. Lett33, 1064(2020) | 
| [13] | M.L. Wang,H.Z. Cui,Y. Zhao,C. Wang,N. Wei,Y. Zhao,Mater. Des.180, 107893(2019) DOI URL | 
| [14] | M.L. Wang,H.Z. Cui,Y. Zhao,C. Wang,N. Wei,X. Gao,Mater. Sci. Eng. A762, 138071(2019) | 
| [15] | D. Li,C. Li,T. Feng,Y. Zhang,G. Sha,J.J. Lewandowski,Acta Mater.123, 285(2017) DOI URL | 
| [16] | F. Otto,A. Dlouhý,C. Somsen,H. Bei,G. Eggeler,E.P. George,Acta Mater.61, 5743(2013) DOI URL | 
| [17] | Y.Q. Zhao,H.Z. Cui,M.L. Wang,Y. Zhao,X. Zhang,C. Wang,Mater. Sci. Eng. A733, 153(2018) | 
| [18] | J.M. Wu,S.J. Lin,J.W. Yeh,S.K. Chen,Y.S. Huang,H.C. Chen,Wear261, 513(2006) | 
| [19] | C.Y. Hsu,T.S. Sheu,J.W. Yeh,S.K. Chen,Wear268, 653(2010) | 
| [20] | Y.H. Su,X.W. Liang,Y.Q. Liu,Z.Y. Dai,Acta Metall. Sin. -Engl. Lett.33, 957(2020) | 
| [21] | Y. Zhao,M.L. Wang,H.Z. Cui,Y. Zhao,X.J. Song,Y. Zeng,J. Alloy. Compd805, 585(2019) DOI URL | 
| [22] | Y. Shi,B. Yang,X. Xie,J. Brechtl,K.A. Dahmen,P.K. Liaw,Corros. Sci.119, 33(2017) DOI URL | 
| [23] | Y. Shi,L. Collins,R. Feng,C. Zhang,N. Balke,P.K. Liaw,Corros. Sci.133, 120(2018) DOI URL | 
| [24] | Y. Qiu,S. Thomas,M.A. Gibson,H.L. Fraser,K. Pohl,N. Birbilis,Corros. Sci.133, 386(2018) DOI URL | 
| [25] | X.G. Yang,Y. Zhou,R.H. Zhu,S.Q. Xi,C. He,H.J. Wu,Y. Gao,Acta Metall. Sin. -Engl. Lett33, 1057(2020) | 
| [26] | A. Raphel,S. Kumaran,K.V. Kumar,L. Varghese,Mater. Today4, 195(2017) | 
| [27] | D.H. Xiao,P.F. Zhou,W.Q. Wu,H.Y. Diao,M.C. Gao,M. Song,Mater. Des.116, 438(2017) DOI URL | 
| [28] | J.T. Fan,L.J. Zhang,P.F. Yu,M.D. Zhang,D.J. Liu,Z. Zhou,Mater. Sci. Eng. A728, 30(2018) | 
| [29] | X. Sun,H. Zhu,J. Li,J. Huang,Z. Xie,Mater. Sci. Eng. A743, 741(2019) | 
| [30] | W. Ji,W. Wang,H. Wang,J. Zhang,Y. Wang,F. Zhang,Intermetallics56, 24(2015) | 
| [31] | D.J.M. King,S.C. Middleburgh,A.G. McGregor,M.B. Cortie,Acta Mater.104, 172(2016) DOI URL | 
| [32] | G. Bracq,M. Laurent-Brocq,L. Perrière,R. Pirès,J.M. Joubert,I. Guillot,Acta Mater.128, 327(2017) DOI URL | 
| [33] | L. Gao,W. Liao,H. Zhang,J. Surjadi,D. Sun,Y. Lu,Coatings7, 156(2017) | 
| [34] | Q. Xing,J. Ma,C. Wang,Y. Zhang,A.C.S. Comb,Sci.20, 602(2018) | 
| [35] | X.W. Qiu,M.J. Wu,C.G. Liu,Y.P. Zhang,C.X. Huang,J. Alloy. Compd.708, 353(2017) DOI URL | 
| [36] | J. Liu,H. Liu,P. Chen,J. Hao,Surf. Coat. Technol.361, 63(2019) DOI URL | 
| [37] | R. Wang,K. Zhang,C. Davies,X. Wu,J. Alloy. Compd.694, 971(2017) DOI URL | 
| [38] | R.M. Pohan,B. Gwalani,J. Lee,T. Alam,J.Y. Hwang,H.J. Ryu,Mater. Chem. Phys.210, 62(2018) DOI URL | 
| [39] | J.H. Kim,K.R. Lim,J.W. Won,Y.S. Na,H.S. Kim,Mater. Sci. Eng. A712, 108(2018) | 
| [40] | W.Y. Zhang,C.M. Wang,Q. Song,H.Z. Cui,X.L. Feng,C.Z. Zhang,Metall. Mater. Trans. A50, 5410(2019) | 
| [41] | Z. Li,C.C. Tasan,K.G. Pradeep,D.A. Raabe,Acta Mater.131, 323(2017) DOI URL | 
| [42] | F. Otto,A. Dlouhý,K.G. Pradeep,M. Kuběnová,D. Raabe,G. Eggeler,Acta Mater.112, 40(2016) DOI URL | 
| [43] | D.H. Lee,J.A. Lee,Y. Zhao,Z. Lu,J.Y. Suh,J.Y. Kim,Acta Mater.140, 443(2017) DOI URL | 
| [44] | B. Gwalani,D. Choudhuri,V. Soni,Y. Ren,M. Styles,J.Y. Hwang,Acta Mater.129, 170(2017) DOI URL | 
| [45] | Y.Y. Zhao,H.W. Chen,Z.P. Lu,T.G. Nieh,Acta Mater.147, 184(2018) DOI URL | 
| [46] | J.Y. He,H. Wang,H.L. Huang,X.D. Xu,M.W. Chen,Y. Wu,Acta Mater.102, 187(2016) DOI URL | 
| [47] | A. Verma,P. Tarate,A.C. Abhyankar,M.R. Mohape,D.S. Gowtam,V.P. Deshmukh,Scr. Mater.161, 28(2019) DOI URL | 
| [48] | F. He,Z. Wang,Q. Wu,J. Li,J. Wang,C.T. Liu,Scr. Mater.126, 15(2017) DOI URL | 
| [49] | Y. Tong,D. Chen,B. Han,J. Wang,R. Feng,T. Yang,Acta Mater.165, 228(2019) DOI | 
| [50] | S. Singh,N. Wanderka,B.S. Murty,U. Glatzel,J. Banhart,Acta Mater.59, 182(2011) DOI URL | 
| [51] | Y. Cai,Y. Chen,S.M. Manladan,Z. Luo,F. Gao,L. Li,Mater. Des.142, 124(2018) DOI URL | 
| [52] | T.T. Shun,L.Y. Chang,M.H. Shiu,Mater. Sci. Eng. A556, 170(2012) | 
| [53] | Y. Qiu,S. Thomas,D. Fabijanic,A.J. Barlow,H.L. Fraser,N. Birbilis,Mater. Des.170, 107698(2019) DOI URL | 
| [54] | A. Munitz,S. Salhov,G. Guttmann,N. Derimow,M. Nahmany,Mater. Sci. Eng. A742, 1(2019) | 
| [55] | Y. Guo,X. Shang,Q. Liu,Surf. Coat. Technol.344, 353(2018) DOI URL | 
| [56] | A. Raza,S. Abdulahad,B. Kang,H.J. Ryu,S.H. Hong,Appl. Surf. Sci.485, 368(2019) DOI URL | 
| [57] | W.R. Wang,W.L. Wang,S.C. Wang,Y.C. Tsai,C.H. Lai,J.W. Yeh,Intermetallics26, 44(2012) | 
| [58] | Y.F. Kao,T.J. Chen,S.K. Chen,J.W. Yeh,J. Alloy. Comp488, 57(2009) DOI URL | 
| [59] | T.M. Butler,M.L. Weaver,J. Alloy. Comp691, 119(2017) DOI URL | 
| [60] | M.L. Wang,H.Z. Cui,N. Wei,L. Ding,X. Zhang,Y. Zhao,A.C.S. Appl,Mater. Interf.10, 4250(2018) DOI URL | 
| [61] | A. Inoue,A. Ta,Mater. Trans.46, 12 2817(2005) DOI URL | 
| [62] | Y. Yu,J. Wang,J. Li,H. Kou,W. Liu,Mater. Lett.138, 78(2015) DOI URL | 
| [63] | Y.J. Zhou,Y. Zhang,Y.L. Wang,G.L. Chen,Appl. Phys. Lett.90, 181904(2007) DOI URL | 
| [64] | Y.J. Zhou,Y. Zhang,T.N. Kim,G.L. Chen,Mater. Lett.62, 2673(2008) DOI URL | 
| [65] | Y. Ma,Q. Wang,B.B. Jiang,C.L. Li,J.M. Hao,X.N. Li,Acta Mater.147, 213(2018) DOI URL | 
| [66] | R. Sriharitha,B.S. Murty,R.S. Kottada,J. Alloy. Comp.583, 419(2014) DOI URL | 
| [67] | Q. Tian,G. Zhang,K. Yin,W. Wang,W. Cheng,Y. Wang,Mater. Charact.151, 302(2019) DOI URL | 
| [68] | J. Li,B. Gao,Y. Wang,X. Chen,Y. Xin,S. Tang,J. Alloy. Comp.792, 789(2019) DOI URL | 
| [69] | H. Cheng,W. Chen,X. Liu,Q. Tang,Y. Xie,P. Dai,Mater. Sci. Eng.A719, 192(2018) | 
| [70] | D. Tabor,J. Inst. Met.79, 1(1951) | 
| [71] | E.O. Hall,Proc. Phys. Soc. Sect. B64, 742(1951) | 
| [72] | N.J. Petch,J. Iron Steel Inst.174, 25(1953) | 
| [73] | G.H. Zhao,X.Z. Liang,B. Kim,P.E.J. Rivera-Díaz-del-Castillo,Mater. Sci. Eng. A756, 156(2019) | 
| [74] | L.A. Gypen,A. Deruyttere,J. Mater. Sci12, 1028(1977) DOI URL | 
| [75] | Y. Mishima,S. Ochiai,N. Hamao,M. Yodogawa,T. Suzuki,Trans. Japan Insti. Metal.27, 656(1986) | 
| [76] | J.F. Nie,B.C. Muddle,Acta Mater.56, 3490(2008) DOI URL | 
| [77] | V. Gehold,H. Habehko,Phys. Stat. Sol.16, 675(1966) DOI URL | 
| [78] | K. Rusovic,H. Warlimo,Phys. Stat. Sol.53, 283(1979) DOI URL | 
| [79] | B. Jansson,A. Melande,Scr. Metall.12, 391(1978) | 
| [80] | G.K. Williamsont,W.H. Hall,Acta Metall.1, 22(1953) DOI URL | 
| [81] | Q. Ye,K. Feng,Z. Li,F. Lu,R. Li,J. Huang,Appl. Surf. Sci.396, 1420(2017) DOI URL | 
| [82] | H. Feng,H.B. Li,Z.H. Jiang,T. Zhang,N. Dong,S.C. Zhang,P.D. Han,S. Zhao,Z.G. Chen,Corros. Sci.158, 108081(2019) DOI URL | 
| [83] | H. Feng,Z.H. Jiang,H.B. Li,P.C. Lu,S.C. Zhang,H.C. Zhu,B.B. Zhang,T. Zhang,D.K. Xu,Z.G. Chen,Corros. Sci.144, 288(2018) DOI URL | 
| [84] | W.Y. Zhang,C.M. Wang,J.X. Ji,X.L. Feng,H.Z. Cui,Q. Song,C.Z. Zhang,Acta Metall. Sin. -Engl. Lett.33, 1331(2020) | 
| [85] | H. Luo,Z.M. Li,A.M. Mingers,D. Raabe,Corros. Sci.134, 131(2018) DOI URL | 
| [86] | A. Veluchamy,D. Sherwood,B. Emmanuel,I.S. Cole,J. Electroanal. Chem.785, 196(2017) DOI URL | 
| [1] | Jiafen Song, Zishu Chai, Jian Zheng, Qingfeng Wu, Feng He, Zenan Yang, Junjie Li, Jincheng Wang, Haiou Yang, Zhijun Wang. Design Fe-based Eutectic Medium-Entropy Alloys Fe2NiCrNbx [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1103-1108. | 
| [2] | Y. D. Liu, J. H. Liu, W. S. Gu, H. L. Li, W. H. Li, Z. L. Pei, J. Gong, C. Sun. Oxidation, Mechanical and Tribological Behaviors of the Ni/cBN Abrasive Coating-Coated Titanium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 1007-1020. | 
| [3] | B. Mehdi, R. Badji, V. Ji, B. Alili, D. Bradai, W. Bedjaoui, F. Deschaux-Beaume, F. Brisset. Unveiling the Residual Stresses, Local Micromechanical Properties and Crystallographic Texture in a Ti-6Al-4V Weld Joint [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 997-1006. | 
| [4] | Dong Wu, Shitong Wei, Shanping Lu. A Study of Microstructure and Mechanical Properties for the Autogenous Single-Pass Butt Weldment of a Ferritic/Martensitic Steel Using Gas Tungsten Arc Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 628-638. | 
| [5] | Hui Xiao, Yu Liu, Kai Wang, Zhipeng Wang, Te Hu, Touwen Fan, Li Ma, Pingying Tang. Effects of Mn Content on Mechanical Properties of FeCoCrNiMnx (0≤x≤0.3) High-Entropy Alloys: A First-Principles Study [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 455-464. | 
| [6] | Ibrahim Ondicho, Bernard Alunda, Fredrick Madaraka, Melody Chepkoech. Effect of Bimodal Grain Size Distribution on the Strain Hardening Behavior of a Medium-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 465-475. | 
| [7] | Jinsen Tian, Jiang Ma, Ming Yan, Zhuo Chen, Jun Shen, Jing Wu. Orientation Dependence of the Micro-Pillar Compression Strength in an Electron Beam Melted Ti-6Al-4V Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 476-484. | 
| [8] | Hua-Zhen Jiang, Zheng-Yang Li, Tao Feng, Peng-Yue Wu, Qi-Sheng Chen, Yun-Long Feng, Long-Fei Chen, Jing-Yu Hou, He-Jian Xu. Effect of Process Parameters on Defects, Melt Pool Shape, Microstructure, and Tensile Behavior of 316L Stainless Steel Produced by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 495-510. | 
| [9] | Chun-Hua Ma, Fu-Sheng Pan, Ding-Fei Zhang, Ai-Tao Tang, Zhi-Wen Lu. Effects of Sb Addition on Microstructural Evolution and Mechanical Properties of Mg-9Al-5Sn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 278-288. | 
| [10] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. | 
| [11] | Xi Zhao, Fa-Fa Yan, Zhi-Min Zhang, Peng-Cheng Gao, Shu-Chang Li. Influence of Heat Treatment on Precipitation Behavior and Mechanical Properties of Extruded AZ80 Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 54-64. | 
| [12] | Lin-Yue Jia, Wen-Bo Du, Jin-Long Fu, Zhao-Hui Wang, Ke Liu, Shu-Bo Li, Xian Du. Obtaining Ultra-High Strength and Ductility in a Mg-Gd-Er-Zn-Zr Alloy via Extrusion, Pre-deformation and Two-Stage Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 39-44. | 
| [13] | Hua-Ping Tang, Qu-Dong Wang, Colin Luo, Chuan Lei, Tian-Wen Liu, Zhong-Yang Li, Kui Wang, Hai-Yan Jiang, Wen-Jiang Ding. Effects of Solution Treatment on the Microstructure, Tensile Properties, and Impact Toughness of an Al-5.0Mg-3.0Zn-1.0Cu Cast Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 98-110. | 
| [14] | Chao-Yue Zhao, Xian-Hua Chen, Peng Peng, Teng Tu, Andrej Atrens, Fu-Sheng Pan. Microstructures and Mechanical Properties of Mg-xAl-1Sn-0.3Mn (x = 1, 3, 5) Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1217-1225. | 
| [15] | Tianbo Zhao, Yutaka S. Sato, Hiroyuki Kokawa, Kazuhiro Ito. Predicting Tensile Properties of Friction-Stir-Welded 6063 Aluminum with Experimentally Measured Welding Heat Input [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1235-1242. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
 WeChat
			   WeChat
			