Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (8): 1087-1102.DOI: 10.1007/s40195-021-01219-z
Previous Articles Next Articles
Guoliang Ma1, Yong Zhao1, Hongzhi Cui1(), Xiaojie Song1, Mingliang Wang1,2, Kwangmin Lee3, Xiaohua Gao1, Qiang Song1, Canming Wang1
Received:
2020-07-11
Revised:
2020-11-26
Accepted:
2020-12-21
Online:
2021-04-17
Published:
2021-08-10
Contact:
Hongzhi Cui
About author:
Hongzhi Cui,cuihongzhi1965@163.comGuoliang Ma, Yong Zhao, Hongzhi Cui, Xiaojie Song, Mingliang Wang, Kwangmin Lee, Xiaohua Gao, Qiang Song, Canming Wang. Addition Al and/or Ti Induced Modifications of Microstructures, Mechanical Properties, and Corrosion Properties in CoCrFeNi High-Entropy Alloy Coatings[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1087-1102.
Add to citation manager EndNote|Ris|BibTeX
Laser power (kW) | Spot diameter (mm) | Scanning speed (mm s-1) | Overlapping ratio (%) |
---|---|---|---|
1.2 | 3 | 7 | 30 |
Table 1 Laser cladding parameters
Laser power (kW) | Spot diameter (mm) | Scanning speed (mm s-1) | Overlapping ratio (%) |
---|---|---|---|
1.2 | 3 | 7 | 30 |
Alloys | \({T}_{\mathrm{m}}\) | \(\Delta {S}_{\mathrm{mix}}\)(J/mol K) | \(\Delta {H}_{\mathrm{mix}}\)(kJ/mol) | Ω | δ (%) | VEC |
---|---|---|---|---|---|---|
AlCoCrFeNi (I) | 1401.2 | 13.38 | -12.32 | 1.52 | 5.44 | 7.20 |
CoCrFeNiTi0.5 (II) | 1595.5 | 13.15 | -11.56 | 1.81 | 5.09 | 7.78 |
AlCoCrFeNiTi0.5 (III) | 1425.5 | 14.70 | -17.92 | 1.16 | 6.32 | 6.91 |
Table 2 Physical parameters of AlCoCrFeNi (I), CoCrFeNiTi0.5 (II) and AlCoCrFeNiTi0.5 (III) coatings
Alloys | \({T}_{\mathrm{m}}\) | \(\Delta {S}_{\mathrm{mix}}\)(J/mol K) | \(\Delta {H}_{\mathrm{mix}}\)(kJ/mol) | Ω | δ (%) | VEC |
---|---|---|---|---|---|---|
AlCoCrFeNi (I) | 1401.2 | 13.38 | -12.32 | 1.52 | 5.44 | 7.20 |
CoCrFeNiTi0.5 (II) | 1595.5 | 13.15 | -11.56 | 1.81 | 5.09 | 7.78 |
AlCoCrFeNiTi0.5 (III) | 1425.5 | 14.70 | -17.92 | 1.16 | 6.32 | 6.91 |
Fig. 3 Cross-sectional microstructures of coatings: a AlCoCrFeNi (I), b CoCrFeNiTi0.5 (II), c AlCoCrFeNiTi0.5 (III) along the compositional line scanning profiles of different elements
Alloys | Region | Elements (at.%) | |||||
---|---|---|---|---|---|---|---|
Al | Co | Cr | Fe | Ni | Ti | ||
AlCoCrFeNi (I) | DR | 18.34 | 16.66 | 15.94 | 31.30 | 18.06 | - |
ID | 9.76 | 17.93 | 18.95 | 35.64 | 17.72 | - | |
CoCrFeNiTi0.5 (II) | DR | - | 18.98 | 19.90 | 39.14 | 16.64 | 5.33 |
ID-A | - | 18.30 | 18.71 | 33.72 | 17.11 | 12.16 | |
ID-B | - | 18.68 | 11.40 | 27.50 | 20.29 | 22.13 | |
AlCoCrFeNiTi0.5 (III) | DR | 13.15 | 14.70 | 10.21 | 35.51 | 16.41 | 10.02 |
ID | 10.70 | 14.06 | 15.64 | 40.56 | 12.80 | 6.72 |
Table 3 Chemical compositions (at.%) of AlCoCrFeNi (I), CoCrFeNiTi0.5 (II) and AlCoCrFeNiTi0.5 (III) coatings
Alloys | Region | Elements (at.%) | |||||
---|---|---|---|---|---|---|---|
Al | Co | Cr | Fe | Ni | Ti | ||
AlCoCrFeNi (I) | DR | 18.34 | 16.66 | 15.94 | 31.30 | 18.06 | - |
ID | 9.76 | 17.93 | 18.95 | 35.64 | 17.72 | - | |
CoCrFeNiTi0.5 (II) | DR | - | 18.98 | 19.90 | 39.14 | 16.64 | 5.33 |
ID-A | - | 18.30 | 18.71 | 33.72 | 17.11 | 12.16 | |
ID-B | - | 18.68 | 11.40 | 27.50 | 20.29 | 22.13 | |
AlCoCrFeNiTi0.5 (III) | DR | 13.15 | 14.70 | 10.21 | 35.51 | 16.41 | 10.02 |
ID | 10.70 | 14.06 | 15.64 | 40.56 | 12.80 | 6.72 |
Fig. 5 a Bright-field (BF) TEM images of AlCoCrFeNiTi0.5 (III) coating, b magnified TEM images of the DR region, c, d SAED patterns of dendrites and interdendrites, respectively
Fig. 6 a TEM images of AlCoCrFeNiTi0.5 (III) coating and corresponding TEM-EDS mappings of (a1) Al, (a2) Co, (a3) Cr, (a4) Fe, (a5) Ni and (a6) Ti elements. b-d TEM-EDS point analysis of different regions as marked in Fig. 5a, b, respectively
Fig. 7 a Cross-sectional, b surface microhardness of AlCoCrFeNi (I), CoCrFeNiTi0.5 (II), AlCoCrFeNiTi0.5 (III) coatings. c Nanoindentation load-depth curves within DR and ID regions of AlCoCrFeNiTi0.5 (III) coating. d Average nanohardness and elastic modulus of different regions in the AlCoCrFeNiTi0.5 coating
Alloys | Ecorr (VSCE) | Icorr (A cm-2) | Epit (VSCE) | Epit-Ecorr (VSCE) |
---|---|---|---|---|
AlCoCrFeNi (I) | -0.291 | 6.250 × 10-6 | - 0.215 | 0.076 |
CoCrFeNiTi0.5 (II) | -0.372 | 1.080 × 10-5 | - 0.015 | 0.357 |
AlCoCrFeNiTi0.5 (III) | -0.185 | 1.017 × 10-7 | 0.098 | 0.283 |
Table 4 Electrochemical parameters of three HEA coatings in 3.5 wt% NaCl solution at room temperature
Alloys | Ecorr (VSCE) | Icorr (A cm-2) | Epit (VSCE) | Epit-Ecorr (VSCE) |
---|---|---|---|---|
AlCoCrFeNi (I) | -0.291 | 6.250 × 10-6 | - 0.215 | 0.076 |
CoCrFeNiTi0.5 (II) | -0.372 | 1.080 × 10-5 | - 0.015 | 0.357 |
AlCoCrFeNiTi0.5 (III) | -0.185 | 1.017 × 10-7 | 0.098 | 0.283 |
Fig. 9 Corrosion properties of CoCrFeNiTi0.5 (II) and AlCoCrFeNiTi0.5 (III) HEA coatings alongside some of the alloys reported in the references in 3.5 wt% NaCl solution at room temperature
Fig. 10 a, b Nyquist and Bode plots of AlCoCrFeNi (I), CoCrFeNiTi0.5 (II), AlCoCrFeNiTi0.5 (III) coatings in the 3.5 wt% NaCl solution at room temperature, respectively. c Equivalent circuit for fitting the EIS data of three coatings
Alloys | Rs (Ω cm2) | Rp (Ω cm2) | Rct (Ω cm2) | CPE1 parameters | CPE2 parameters | ||
---|---|---|---|---|---|---|---|
Y1 (µF/cm2) | n1 | Y2 (µF/cm2) | n2 | ||||
AlCoCrFeNi (I) | 12.08 | 3.28 × 104 | 1.29 × 104 | 55.06 | 0.87 | 48.49 | 0.82 |
CoCrFeNiTi0.5 (II) | 11.70 | 5.79 × 103 | 8.45 × 103 | 80.47 | 0.85 | 45.73 | 0.79 |
AlCoCrFeNiTi0.5 (III) | 12.91 | 4.07 × 105 | 2.81 × 106 | 6.57 | 0.80 | 3.57 | 0.80 |
Table 5 Equivalent circuit parameters obtained by fitting the EIS results of three coatings in 3.5 wt% NaCl solution at room temperature
Alloys | Rs (Ω cm2) | Rp (Ω cm2) | Rct (Ω cm2) | CPE1 parameters | CPE2 parameters | ||
---|---|---|---|---|---|---|---|
Y1 (µF/cm2) | n1 | Y2 (µF/cm2) | n2 | ||||
AlCoCrFeNi (I) | 12.08 | 3.28 × 104 | 1.29 × 104 | 55.06 | 0.87 | 48.49 | 0.82 |
CoCrFeNiTi0.5 (II) | 11.70 | 5.79 × 103 | 8.45 × 103 | 80.47 | 0.85 | 45.73 | 0.79 |
AlCoCrFeNiTi0.5 (III) | 12.91 | 4.07 × 105 | 2.81 × 106 | 6.57 | 0.80 | 3.57 | 0.80 |
Fig. 11 Corrosion morphologies for the coatings: a AlCoCrFeNi (I), b CoCrFeNiTi0.5 (II), c, d AlCoCrFeNiTi0.5 (III) after electrochemical tests in the 3.5 wt% NaCl solution at room temperature
Fig. 12 a-g XPS spectra of Al, Co, Cr, Fe, Ni, Ti and O elements of the passive films on the Alloy (I): AlCoCrFeNi, Alloy (II): CoCrFeNiTi0.5 and Alloy (III): AlCoCrFeNiTi0.5 coatings, respectively. h Schematic illustration of pitting corrosion process of HEA coatings
[1] | B. Cantor,I.T.H. Chang,P. Knight,A.J.B. Vincent,Mater. Sci. Eng.A 375-377, 213(2004) |
[2] |
J.W. Yeh,S.Y. Chang,Y.D. Hong,S.K. Chen,S.J. Lin,Mater. Chem. Phys.103, 41(2007)
DOI URL |
[3] |
Y. Zhang,T.T. Zuo,Z. Tang,M.C. Gao,K.A. Dahmen,P.K. Liaw,Z.P. Lu,Prog. Mater. Sci.61, 1(2014)
DOI URL |
[4] |
D. Ma,M. Yao,K.G. Pradeep,C.C. Tasan,H. Springer,D. Raabe,Acta Mater.98, 288(2015)
DOI URL |
[5] | X. Yang,Y. Zhang,Mater. Chem. Phys132, 233(2012) |
[6] |
M.G. Poletti,L. Battezzati,Acta Mater.75, 297(2014)
DOI URL |
[7] |
S. Guo,C. Ng,J. Lu,C.T. Liu,J. Appl. Phys.109, 103505(2011)
DOI URL |
[8] | P. Cui,Y. Ma,L. Zhang,M. Zhang,J. Fan,W. Dong,Mater. Sci. Eng. A737, 198(2018) |
[9] | P. Cui,Y. Ma,L. Zhang,M. Zhang,J. Fan,W. Dong,Mater. Sci. Eng. A731, 124(2018) |
[10] | Y. Dong,Y. Lu,L. Jiang,T. Wang,T. Li,Intermetallics52, 105(2014) |
[11] |
N. Yurchenko,N. Stepanov,G. Salishchev,Mater. Sci. Technol.33, 17(2016)
DOI URL |
[12] | Y.F. Juan,J. Zhang,Y.B. Dai,Q. Dong,Y.F. Han,Acta Metall. Sin. -Engl. Lett33, 1064(2020) |
[13] |
M.L. Wang,H.Z. Cui,Y. Zhao,C. Wang,N. Wei,Y. Zhao,Mater. Des.180, 107893(2019)
DOI URL |
[14] | M.L. Wang,H.Z. Cui,Y. Zhao,C. Wang,N. Wei,X. Gao,Mater. Sci. Eng. A762, 138071(2019) |
[15] |
D. Li,C. Li,T. Feng,Y. Zhang,G. Sha,J.J. Lewandowski,Acta Mater.123, 285(2017)
DOI URL |
[16] |
F. Otto,A. Dlouhý,C. Somsen,H. Bei,G. Eggeler,E.P. George,Acta Mater.61, 5743(2013)
DOI URL |
[17] | Y.Q. Zhao,H.Z. Cui,M.L. Wang,Y. Zhao,X. Zhang,C. Wang,Mater. Sci. Eng. A733, 153(2018) |
[18] | J.M. Wu,S.J. Lin,J.W. Yeh,S.K. Chen,Y.S. Huang,H.C. Chen,Wear261, 513(2006) |
[19] | C.Y. Hsu,T.S. Sheu,J.W. Yeh,S.K. Chen,Wear268, 653(2010) |
[20] | Y.H. Su,X.W. Liang,Y.Q. Liu,Z.Y. Dai,Acta Metall. Sin. -Engl. Lett.33, 957(2020) |
[21] |
Y. Zhao,M.L. Wang,H.Z. Cui,Y. Zhao,X.J. Song,Y. Zeng,J. Alloy. Compd805, 585(2019)
DOI URL |
[22] |
Y. Shi,B. Yang,X. Xie,J. Brechtl,K.A. Dahmen,P.K. Liaw,Corros. Sci.119, 33(2017)
DOI URL |
[23] |
Y. Shi,L. Collins,R. Feng,C. Zhang,N. Balke,P.K. Liaw,Corros. Sci.133, 120(2018)
DOI URL |
[24] |
Y. Qiu,S. Thomas,M.A. Gibson,H.L. Fraser,K. Pohl,N. Birbilis,Corros. Sci.133, 386(2018)
DOI URL |
[25] | X.G. Yang,Y. Zhou,R.H. Zhu,S.Q. Xi,C. He,H.J. Wu,Y. Gao,Acta Metall. Sin. -Engl. Lett33, 1057(2020) |
[26] | A. Raphel,S. Kumaran,K.V. Kumar,L. Varghese,Mater. Today4, 195(2017) |
[27] |
D.H. Xiao,P.F. Zhou,W.Q. Wu,H.Y. Diao,M.C. Gao,M. Song,Mater. Des.116, 438(2017)
DOI URL |
[28] | J.T. Fan,L.J. Zhang,P.F. Yu,M.D. Zhang,D.J. Liu,Z. Zhou,Mater. Sci. Eng. A728, 30(2018) |
[29] | X. Sun,H. Zhu,J. Li,J. Huang,Z. Xie,Mater. Sci. Eng. A743, 741(2019) |
[30] | W. Ji,W. Wang,H. Wang,J. Zhang,Y. Wang,F. Zhang,Intermetallics56, 24(2015) |
[31] |
D.J.M. King,S.C. Middleburgh,A.G. McGregor,M.B. Cortie,Acta Mater.104, 172(2016)
DOI URL |
[32] |
G. Bracq,M. Laurent-Brocq,L. Perrière,R. Pirès,J.M. Joubert,I. Guillot,Acta Mater.128, 327(2017)
DOI URL |
[33] | L. Gao,W. Liao,H. Zhang,J. Surjadi,D. Sun,Y. Lu,Coatings7, 156(2017) |
[34] | Q. Xing,J. Ma,C. Wang,Y. Zhang,A.C.S. Comb,Sci.20, 602(2018) |
[35] |
X.W. Qiu,M.J. Wu,C.G. Liu,Y.P. Zhang,C.X. Huang,J. Alloy. Compd.708, 353(2017)
DOI URL |
[36] |
J. Liu,H. Liu,P. Chen,J. Hao,Surf. Coat. Technol.361, 63(2019)
DOI URL |
[37] |
R. Wang,K. Zhang,C. Davies,X. Wu,J. Alloy. Compd.694, 971(2017)
DOI URL |
[38] |
R.M. Pohan,B. Gwalani,J. Lee,T. Alam,J.Y. Hwang,H.J. Ryu,Mater. Chem. Phys.210, 62(2018)
DOI URL |
[39] | J.H. Kim,K.R. Lim,J.W. Won,Y.S. Na,H.S. Kim,Mater. Sci. Eng. A712, 108(2018) |
[40] | W.Y. Zhang,C.M. Wang,Q. Song,H.Z. Cui,X.L. Feng,C.Z. Zhang,Metall. Mater. Trans. A50, 5410(2019) |
[41] |
Z. Li,C.C. Tasan,K.G. Pradeep,D.A. Raabe,Acta Mater.131, 323(2017)
DOI URL |
[42] |
F. Otto,A. Dlouhý,K.G. Pradeep,M. Kuběnová,D. Raabe,G. Eggeler,Acta Mater.112, 40(2016)
DOI URL |
[43] |
D.H. Lee,J.A. Lee,Y. Zhao,Z. Lu,J.Y. Suh,J.Y. Kim,Acta Mater.140, 443(2017)
DOI URL |
[44] |
B. Gwalani,D. Choudhuri,V. Soni,Y. Ren,M. Styles,J.Y. Hwang,Acta Mater.129, 170(2017)
DOI URL |
[45] |
Y.Y. Zhao,H.W. Chen,Z.P. Lu,T.G. Nieh,Acta Mater.147, 184(2018)
DOI URL |
[46] |
J.Y. He,H. Wang,H.L. Huang,X.D. Xu,M.W. Chen,Y. Wu,Acta Mater.102, 187(2016)
DOI URL |
[47] |
A. Verma,P. Tarate,A.C. Abhyankar,M.R. Mohape,D.S. Gowtam,V.P. Deshmukh,Scr. Mater.161, 28(2019)
DOI URL |
[48] |
F. He,Z. Wang,Q. Wu,J. Li,J. Wang,C.T. Liu,Scr. Mater.126, 15(2017)
DOI URL |
[49] |
Y. Tong,D. Chen,B. Han,J. Wang,R. Feng,T. Yang,Acta Mater.165, 228(2019)
DOI |
[50] |
S. Singh,N. Wanderka,B.S. Murty,U. Glatzel,J. Banhart,Acta Mater.59, 182(2011)
DOI URL |
[51] |
Y. Cai,Y. Chen,S.M. Manladan,Z. Luo,F. Gao,L. Li,Mater. Des.142, 124(2018)
DOI URL |
[52] | T.T. Shun,L.Y. Chang,M.H. Shiu,Mater. Sci. Eng. A556, 170(2012) |
[53] |
Y. Qiu,S. Thomas,D. Fabijanic,A.J. Barlow,H.L. Fraser,N. Birbilis,Mater. Des.170, 107698(2019)
DOI URL |
[54] | A. Munitz,S. Salhov,G. Guttmann,N. Derimow,M. Nahmany,Mater. Sci. Eng. A742, 1(2019) |
[55] |
Y. Guo,X. Shang,Q. Liu,Surf. Coat. Technol.344, 353(2018)
DOI URL |
[56] |
A. Raza,S. Abdulahad,B. Kang,H.J. Ryu,S.H. Hong,Appl. Surf. Sci.485, 368(2019)
DOI URL |
[57] | W.R. Wang,W.L. Wang,S.C. Wang,Y.C. Tsai,C.H. Lai,J.W. Yeh,Intermetallics26, 44(2012) |
[58] |
Y.F. Kao,T.J. Chen,S.K. Chen,J.W. Yeh,J. Alloy. Comp488, 57(2009)
DOI URL |
[59] |
T.M. Butler,M.L. Weaver,J. Alloy. Comp691, 119(2017)
DOI URL |
[60] |
M.L. Wang,H.Z. Cui,N. Wei,L. Ding,X. Zhang,Y. Zhao,A.C.S. Appl,Mater. Interf.10, 4250(2018)
DOI URL |
[61] |
A. Inoue,A. Ta,Mater. Trans.46, 12 2817(2005)
DOI URL |
[62] |
Y. Yu,J. Wang,J. Li,H. Kou,W. Liu,Mater. Lett.138, 78(2015)
DOI URL |
[63] |
Y.J. Zhou,Y. Zhang,Y.L. Wang,G.L. Chen,Appl. Phys. Lett.90, 181904(2007)
DOI URL |
[64] |
Y.J. Zhou,Y. Zhang,T.N. Kim,G.L. Chen,Mater. Lett.62, 2673(2008)
DOI URL |
[65] |
Y. Ma,Q. Wang,B.B. Jiang,C.L. Li,J.M. Hao,X.N. Li,Acta Mater.147, 213(2018)
DOI URL |
[66] |
R. Sriharitha,B.S. Murty,R.S. Kottada,J. Alloy. Comp.583, 419(2014)
DOI URL |
[67] |
Q. Tian,G. Zhang,K. Yin,W. Wang,W. Cheng,Y. Wang,Mater. Charact.151, 302(2019)
DOI URL |
[68] |
J. Li,B. Gao,Y. Wang,X. Chen,Y. Xin,S. Tang,J. Alloy. Comp.792, 789(2019)
DOI URL |
[69] | H. Cheng,W. Chen,X. Liu,Q. Tang,Y. Xie,P. Dai,Mater. Sci. Eng.A719, 192(2018) |
[70] | D. Tabor,J. Inst. Met.79, 1(1951) |
[71] | E.O. Hall,Proc. Phys. Soc. Sect. B64, 742(1951) |
[72] | N.J. Petch,J. Iron Steel Inst.174, 25(1953) |
[73] | G.H. Zhao,X.Z. Liang,B. Kim,P.E.J. Rivera-Díaz-del-Castillo,Mater. Sci. Eng. A756, 156(2019) |
[74] |
L.A. Gypen,A. Deruyttere,J. Mater. Sci12, 1028(1977)
DOI URL |
[75] | Y. Mishima,S. Ochiai,N. Hamao,M. Yodogawa,T. Suzuki,Trans. Japan Insti. Metal.27, 656(1986) |
[76] |
J.F. Nie,B.C. Muddle,Acta Mater.56, 3490(2008)
DOI URL |
[77] |
V. Gehold,H. Habehko,Phys. Stat. Sol.16, 675(1966)
DOI URL |
[78] |
K. Rusovic,H. Warlimo,Phys. Stat. Sol.53, 283(1979)
DOI URL |
[79] | B. Jansson,A. Melande,Scr. Metall.12, 391(1978) |
[80] |
G.K. Williamsont,W.H. Hall,Acta Metall.1, 22(1953)
DOI URL |
[81] |
Q. Ye,K. Feng,Z. Li,F. Lu,R. Li,J. Huang,Appl. Surf. Sci.396, 1420(2017)
DOI URL |
[82] |
H. Feng,H.B. Li,Z.H. Jiang,T. Zhang,N. Dong,S.C. Zhang,P.D. Han,S. Zhao,Z.G. Chen,Corros. Sci.158, 108081(2019)
DOI URL |
[83] |
H. Feng,Z.H. Jiang,H.B. Li,P.C. Lu,S.C. Zhang,H.C. Zhu,B.B. Zhang,T. Zhang,D.K. Xu,Z.G. Chen,Corros. Sci.144, 288(2018)
DOI URL |
[84] | W.Y. Zhang,C.M. Wang,J.X. Ji,X.L. Feng,H.Z. Cui,Q. Song,C.Z. Zhang,Acta Metall. Sin. -Engl. Lett.33, 1331(2020) |
[85] |
H. Luo,Z.M. Li,A.M. Mingers,D. Raabe,Corros. Sci.134, 131(2018)
DOI URL |
[86] |
A. Veluchamy,D. Sherwood,B. Emmanuel,I.S. Cole,J. Electroanal. Chem.785, 196(2017)
DOI URL |
[1] | Jiafen Song, Zishu Chai, Jian Zheng, Qingfeng Wu, Feng He, Zenan Yang, Junjie Li, Jincheng Wang, Haiou Yang, Zhijun Wang. Design Fe-based Eutectic Medium-Entropy Alloys Fe2NiCrNbx [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1103-1108. |
[2] | Y. D. Liu, J. H. Liu, W. S. Gu, H. L. Li, W. H. Li, Z. L. Pei, J. Gong, C. Sun. Oxidation, Mechanical and Tribological Behaviors of the Ni/cBN Abrasive Coating-Coated Titanium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 1007-1020. |
[3] | B. Mehdi, R. Badji, V. Ji, B. Alili, D. Bradai, W. Bedjaoui, F. Deschaux-Beaume, F. Brisset. Unveiling the Residual Stresses, Local Micromechanical Properties and Crystallographic Texture in a Ti-6Al-4V Weld Joint [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 997-1006. |
[4] | Dong Wu, Shitong Wei, Shanping Lu. A Study of Microstructure and Mechanical Properties for the Autogenous Single-Pass Butt Weldment of a Ferritic/Martensitic Steel Using Gas Tungsten Arc Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 628-638. |
[5] | Hui Xiao, Yu Liu, Kai Wang, Zhipeng Wang, Te Hu, Touwen Fan, Li Ma, Pingying Tang. Effects of Mn Content on Mechanical Properties of FeCoCrNiMnx (0≤x≤0.3) High-Entropy Alloys: A First-Principles Study [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 455-464. |
[6] | Ibrahim Ondicho, Bernard Alunda, Fredrick Madaraka, Melody Chepkoech. Effect of Bimodal Grain Size Distribution on the Strain Hardening Behavior of a Medium-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 465-475. |
[7] | Jinsen Tian, Jiang Ma, Ming Yan, Zhuo Chen, Jun Shen, Jing Wu. Orientation Dependence of the Micro-Pillar Compression Strength in an Electron Beam Melted Ti-6Al-4V Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 476-484. |
[8] | Hua-Zhen Jiang, Zheng-Yang Li, Tao Feng, Peng-Yue Wu, Qi-Sheng Chen, Yun-Long Feng, Long-Fei Chen, Jing-Yu Hou, He-Jian Xu. Effect of Process Parameters on Defects, Melt Pool Shape, Microstructure, and Tensile Behavior of 316L Stainless Steel Produced by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 495-510. |
[9] | Chun-Hua Ma, Fu-Sheng Pan, Ding-Fei Zhang, Ai-Tao Tang, Zhi-Wen Lu. Effects of Sb Addition on Microstructural Evolution and Mechanical Properties of Mg-9Al-5Sn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 278-288. |
[10] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. |
[11] | Xi Zhao, Fa-Fa Yan, Zhi-Min Zhang, Peng-Cheng Gao, Shu-Chang Li. Influence of Heat Treatment on Precipitation Behavior and Mechanical Properties of Extruded AZ80 Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 54-64. |
[12] | Lin-Yue Jia, Wen-Bo Du, Jin-Long Fu, Zhao-Hui Wang, Ke Liu, Shu-Bo Li, Xian Du. Obtaining Ultra-High Strength and Ductility in a Mg-Gd-Er-Zn-Zr Alloy via Extrusion, Pre-deformation and Two-Stage Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 39-44. |
[13] | Hua-Ping Tang, Qu-Dong Wang, Colin Luo, Chuan Lei, Tian-Wen Liu, Zhong-Yang Li, Kui Wang, Hai-Yan Jiang, Wen-Jiang Ding. Effects of Solution Treatment on the Microstructure, Tensile Properties, and Impact Toughness of an Al-5.0Mg-3.0Zn-1.0Cu Cast Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 98-110. |
[14] | Chao-Yue Zhao, Xian-Hua Chen, Peng Peng, Teng Tu, Andrej Atrens, Fu-Sheng Pan. Microstructures and Mechanical Properties of Mg-xAl-1Sn-0.3Mn (x = 1, 3, 5) Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1217-1225. |
[15] | Tianbo Zhao, Yutaka S. Sato, Hiroyuki Kokawa, Kazuhiro Ito. Predicting Tensile Properties of Friction-Stir-Welded 6063 Aluminum with Experimentally Measured Welding Heat Input [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1235-1242. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||