Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (4): 465-475.DOI: 10.1007/s40195-020-01173-2
Previous Articles Next Articles
Ibrahim Ondicho1,2(), Bernard Alunda3, Fredrick Madaraka1,2, Melody Chepkoech4
Received:
2020-07-24
Revised:
2020-09-24
Accepted:
2020-09-28
Online:
2021-04-10
Published:
2021-03-30
Contact:
Ibrahim Ondicho
About author:
Ibrahim Ondicho, ibrahim.ondicho@dkut.ac.keIbrahim Ondicho, Bernard Alunda, Fredrick Madaraka, Melody Chepkoech. Effect of Bimodal Grain Size Distribution on the Strain Hardening Behavior of a Medium-Entropy Alloy[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 465-475.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Backscatter electron (BSE) images showing the microstructure of the specimens annealed at 600 °C for a 5 min b 7 min c 10 min, d 30 min, e 1 h, f 24 h, 800 °C for g 4 h, and 1100 °C for h 30 min. The white arrows in a-c represent the non-recrystallized microstructure
Fig. 2 EBSD images of specimens annealed for a 5 min, b 7 min, c 10 min, d 30 min, e 1 h, and f 24 h. The white arrows in a-d show the non-recrystallized part of the microstructure
Fig. 3 a Engineering stress-strain curves of all the annealing conditions, b Hall-Petch relationship of fully recrystallized specimens, c true stress-strain curves d strain hardening rate vs. the true strain of both partially recrystallized and fully recrystallized specimens
Heat treatment condition | Grain size (μm) | Yield strength (MPa) | Ultimate tensile strength (MPa) | Total elongation (%) |
---|---|---|---|---|
600°C_5 min | PR (0.42 | 1020 | 1180 | 17 |
600°C_7 min | PR (0.45) | 920 | 1070 | 20 |
600°C_10 min | PR(0.49) | 640 | 915 | 26 |
600°C_30 min | PR (0.50) | 580 | 940 | 31 |
600°C_1 h | 0.97 | 550 | 990 | 41 |
600°C_ 24 h | 1.83 | 440 | 960 | 45 |
800°C_ 4 h | 7.40 | 220 | 830 | 49 |
1100°C_30 min | 49.30 | 170 | 800 | 54 |
Table 1 A summary of the grain sizes, yield strength, ultimate tensile strength, and total elongation of both partially and fully recrystallized specimens. Partially recrystallized specimens are denoted as PR, and the fully recrystallized specimens are denoted as (FR)
Heat treatment condition | Grain size (μm) | Yield strength (MPa) | Ultimate tensile strength (MPa) | Total elongation (%) |
---|---|---|---|---|
600°C_5 min | PR (0.42 | 1020 | 1180 | 17 |
600°C_7 min | PR (0.45) | 920 | 1070 | 20 |
600°C_10 min | PR(0.49) | 640 | 915 | 26 |
600°C_30 min | PR (0.50) | 580 | 940 | 31 |
600°C_1 h | 0.97 | 550 | 990 | 41 |
600°C_ 24 h | 1.83 | 440 | 960 | 45 |
800°C_ 4 h | 7.40 | 220 | 830 | 49 |
1100°C_30 min | 49.30 | 170 | 800 | 54 |
Fig. 4 a Stress-strain curve of both partially recrystallized and fully recrystallized specimens with a Hollomon fit (dotted Cyan color). b Strain hardening exponent, n. c Strength coefficient, K versus grain size curves
Grain size (μm) | Recrystallized fraction (%) | K | n |
---|---|---|---|
PR (0.42) | 74 | 1274 | 0.04 |
PR (0.45) | 83 | 1237 | 0.07 |
PR (0.49) | 87 | 1183 | 0.17 |
PR(0.50) | 96 | 1277 | 0.23 |
0.97 | 100 | 1358 | 0.31 |
1.83 | 100 | 1337 | 0.36 |
7.40 | 100 | 1217 | 0.44 |
49.30 | 100 | 1127 | 0.47 |
Table 2 A summary of the grain sizes and strength coefficient and strain hardening exponent values from the Hollomon equation
Grain size (μm) | Recrystallized fraction (%) | K | n |
---|---|---|---|
PR (0.42) | 74 | 1274 | 0.04 |
PR (0.45) | 83 | 1237 | 0.07 |
PR (0.49) | 87 | 1183 | 0.17 |
PR(0.50) | 96 | 1277 | 0.23 |
0.97 | 100 | 1358 | 0.31 |
1.83 | 100 | 1337 | 0.36 |
7.40 | 100 | 1217 | 0.44 |
49.30 | 100 | 1127 | 0.47 |
Fig. 5 a Stress-strain curve of both partially recrystallized and fully recrystallized specimens with a Ludwigson fit (dotted line with dark cyan color). b Strain hardening exponents n1 and n2. c Strength coefficients (K1, K2) vs. grain size curves
Grain size (μm) | K1 | n1 | K2 | ${e}^{{K}_{2}}$ | n2 |
---|---|---|---|---|---|
PR (0.42) | 1268 | 0.04 | 5.5 | 244.69 | -156 |
PR (0.45) | 1237 | 0.07 | 5.28 | 196.37 | -103 |
PR (0.49) | 1208 | 0.18 | 5.32 | 204.38 | -54 |
PR(0.50) | 1299 | 0.25 | 5.5 | 244.69 | -44 |
0.97 | 1206 | 0.82 | 6.23 | 507.76 | -0.09 |
1.83 | 1227 | 0.69 | 5.86 | 350.72 | -0.22 |
7.40 | 1176 | 0.56 | 4.87 | 130.32 | -0.36 |
49.30 | 1098 | 0.6 | 4.74 | 114.43 | -0.3 |
Table 3 A summary of the grain sizes and parameters from the fitting of the true stress-strain curves using the Ludwigson equation
Grain size (μm) | K1 | n1 | K2 | ${e}^{{K}_{2}}$ | n2 |
---|---|---|---|---|---|
PR (0.42) | 1268 | 0.04 | 5.5 | 244.69 | -156 |
PR (0.45) | 1237 | 0.07 | 5.28 | 196.37 | -103 |
PR (0.49) | 1208 | 0.18 | 5.32 | 204.38 | -54 |
PR(0.50) | 1299 | 0.25 | 5.5 | 244.69 | -44 |
0.97 | 1206 | 0.82 | 6.23 | 507.76 | -0.09 |
1.83 | 1227 | 0.69 | 5.86 | 350.72 | -0.22 |
7.40 | 1176 | 0.56 | 4.87 | 130.32 | -0.36 |
49.30 | 1098 | 0.6 | 4.74 | 114.43 | -0.3 |
[1] |
M.H. Tsai, J.W. Yeh, Mater. Res. Lett. 2 107 (2014)
DOI URL |
[2] |
M.H. Tsai, Entropy 18, 252 (2016)
DOI URL |
[3] |
J.W. Yeh, Ann. Chim. Sci. Des Mater. 31 633 (2006)
DOI URL |
[4] |
F. Otto, Y. Yang, H. Bei, E.P. George, Acta Mater. 61 2628 (2013)
DOI URL PMID |
[5] | R. Kozak, A. Sologubenko, W. Steurer, Zeitschrift Fur Krist. 230 55 (2015) |
[6] | M.C. Gao, P.K. Liaw, J.W. Yeh, Y. Zhang, High-Entropy Alloys: Fundamentals App. (2016). https://doi.org/10.1007/978-3-319-27013-5 |
[7] |
S. Haas, M. Mosbacher, O.N. Senkov, M. Feuerbacher, J. Freudenberger, S. Gezgin, R. Völkl, U. Glatzel, Entropy 20, 654 (2018)
DOI URL |
[8] |
J.W. Yeh, JOM 65, 1759 (2013)
DOI URL |
[9] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345, 1153 (2014)
DOI URL PMID |
[10] |
A.J. Zaddach, C. Niu, C.C. Koch, D.L. Irving, JOM 65, 1780 (2013)
DOI URL |
[11] | J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater. 102 187 (2016) |
[12] | T.T. Shun, C.H. Hung, C.F. Lee, J. Alloys Compd. 493 105 (2010) |
[13] |
S. Huang, H. Huang, W. Li, D. Kim, S. Lu, X. Li, E. Holmström, S.K. Kwon, L. Vitos, Nat. Commun. 9 2381 (2018)
DOI URL PMID |
[14] | W.H. Liu, Y. Wu, J.Y. He, T.G. Nieh, Z.P. Lu, Scr. Mater. 68 526 (2013) |
[15] |
R.S. Ganji, P. Sai Karthik, K. Bhanu Sankara Rao, K.V. Rajulapati, Acta. Mater. 125 58 (2017)
DOI URL |
[16] |
N. Zhou, T. Hu, J. Huang, J. Luo, Scr. Mater. 124 160 (2016)
DOI URL |
[17] |
B.R. Chen, A.C. Yeh, J.W. Yeh, Sci. Rep. 6 22306 (2016)
DOI URL PMID |
[18] |
J. Hou, M. Zhang, S. Ma, P.K. Liaw, Y. Zhang, J. Qiao, Mater. Sci. Eng. A 707 593 (2017)
DOI URL |
[19] |
I. Toda-Caraballo, P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 85 14 (2015)
DOI URL |
[20] | N.D. Stepanov, D.G. Shaysultanov, R.S. Chernichenko, D.M. Ikornikov, V.N. Sanin, S.V. Zherebtsov, Mater. Sci. Eng. A 728 54 (2018) |
[21] |
Z. Li, C.C. Tasan, H. Springer, B. Gault, D. Raabe, Sci. Rep. 7 40704 (2017)
DOI URL PMID |
[22] | C. Varvenne, A. Luque, W.A. Curtin, Acta Mater. 118 164 (2016) |
[23] | C. Li, J.C. Li, M. Zhao, Q. Jiang, J. Alloys Compd. 475 752 (2009) |
[24] |
Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534, 227 (2016)
URL PMID |
[25] | J. Li, Q. Fang, B. Liu, Y. Liu, Acta Mater. 147 35 (2018) |
[26] | H. Huang, Y. Wu, J. He, H. Wang, X. Liu, K. An, W. Wu, Z. Lu, Adv. Mater. 29 1701678 (2017) |
[27] | D.C. Ludwigson, Metall. Trans. 2 2825 (1971) |
[28] | H.U. Jeong, N. Park, Mater. Sci. Eng. A 782 138896 (2019) |
[29] | K.G. Samuel, P. Rodriguez, J. Mater. Sci. 40 5727 (2005) |
[30] | M. Choi, I. Ondicho, N. Park, N. Tsuji, J. Alloys Compd. 780 959 (2019) |
[31] | M.V. Klimova, D.G. Shaysultanov, S.V. Zherebtsov, N.D. Stepanov, Mater. Sci. Eng. A 748 228 (2019) |
[32] | M. Kato, Mater. Trans. 55 19 (2014) |
[33] | S. Yoshida, T. Bhattacharjee, Y. Bai, N. Tsuji, Scr. Mater. 134 33 (2017) |
[34] | M.P. Agustianingrum, I. Ondicho, D.E. Jodi, N. Park, U. Lee, Mater. Sci. Eng. A 759 633 (2019) |
[35] | R. E. Smallman, R. J. Bishop, Mod. Phys. Metall. Mater. Eng. (1999), 197-258. |
[36] |
S.J. Sun, Y.Z. Tian, H.R. Lin, X.G. Dong, Y.H. Wang, Z.J. Zhang, Z.F. Zhang, Mater. Des. 133 122 (2017)
DOI URL |
[37] |
K.Y. Tsai, M.H. Tsai, J.W. Yeh, Acta Mater. 61 4887 (2013)
URL PMID |
[38] | Y.Z. Tian, S. Gao, L.J. Zhao, S. Lu, R. Pippan, Z.F. Zhang, N. Tsuji, Scr. Mater. 142 88 (2018) |
[39] | J. Humphreys, G. S. Rohrer, A. Rollett, in Recryst. Relat. Annealing Phenom. (2017), 375-429. |
[40] | B. Schuh, R. Pippan, A. Hohenwarter, Mater. Sci. Eng. A 748 379 (2019) |
[41] | Y. Wang, M. Chen, F. Zhou, E. Ma, Nature 491, 912 (2002) |
[42] | P. Xue, B.L. Xiao, Z.Y. Ma, Mater. Sci. Eng. A 532 106 (2012) |
[43] | Y. Zhao, Y. Zhu, E.J. Lavernia, Adv. Eng. Mater. 12 769 (2010) |
[44] |
Y.H. Zhao, J.F. Bingert, Y.T. Zhu, X.Z. Liao, R.Z. Valiev, Z. Horita, T.G. Langdon, Y.Z. Zhou, E.J. Lavernia, Appl. Phys. Lett. 92 081903 (2008)
DOI URL |
[45] |
S.J. Sun, Y.Z. Tian, H.R. Lin, H.J. Yang, X.G. Dong, Y.H. Wang, Z.F. Zhang, Mater. Sci. Eng. A 712 603 (2018)
DOI URL |
[46] | B.C. De Cooman, Y. Estrin, S.K. Kim, Acta Mater. 142 283 (2018) |
[47] | Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka, D. Raabe, Acta Mater. 94 124 (2015) |
[1] | Long Xin, Yongming Han, Ligong Ling, Yonghao Lu, Tetsuo Shoji. Surface Oxidation and Subsurface Microstructure Evolution of Alloy 690TT Induced by Partial Slip Fretting Corrosion in High-Temperature Pure Water [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 543-554. |
[2] | Li-Li Zhang, Jie Song, Sajjad Ur Rehman, Jia-Jie Li, Lei Wang, Mu-Nan Yang, Ren-Hui Liu, Qing-Zheng Jiang, Zhen-Chen Zhong. Uneven Evolution of Microstructure, Magnetic Properties and Coercivity Mechanism of Mo-Substituted Nd-Ce-Fe-B Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 590-596. |
[3] | Chenliang Chu, Weiping Chen, Zhen Chen, Zhenfei Jiang, Hao Wang, Zhiqiang Fu. Microstructure and Mechanical Behavior of FeNiCoCr and FeNiCoCrMn High-Entropy Alloys Fabricated by Powder Metallurgy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 445-454. |
[4] | Hui Xiao, Yu Liu, Kai Wang, Zhipeng Wang, Te Hu, Touwen Fan, Li Ma, Pingying Tang. Effects of Mn Content on Mechanical Properties of FeCoCrNiMnx (0≤x≤0.3) High-Entropy Alloys: A First-Principles Study [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 455-464. |
[5] | Jinsen Tian, Jiang Ma, Ming Yan, Zhuo Chen, Jun Shen, Jing Wu. Orientation Dependence of the Micro-Pillar Compression Strength in an Electron Beam Melted Ti-6Al-4V Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 476-484. |
[6] | Hua-Zhen Jiang, Zheng-Yang Li, Tao Feng, Peng-Yue Wu, Qi-Sheng Chen, Yun-Long Feng, Long-Fei Chen, Jing-Yu Hou, He-Jian Xu. Effect of Process Parameters on Defects, Melt Pool Shape, Microstructure, and Tensile Behavior of 316L Stainless Steel Produced by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 495-510. |
[7] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. |
[8] | Kai Yan, Huan Liu, Xiaowei Xue, Jing Bai, Honghui Chen, Shuangquan Fang, Jingjing Liu. Enhancing Mechanical Properties of Mg-6Zn Alloy by Deformation-Induced Nanoprecipitation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 217-226. |
[9] | Chun-Hua Ma, Fu-Sheng Pan, Ding-Fei Zhang, Ai-Tao Tang, Zhi-Wen Lu. Effects of Sb Addition on Microstructural Evolution and Mechanical Properties of Mg-9Al-5Sn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 278-288. |
[10] | Hua-Ping Tang, Qu-Dong Wang, Colin Luo, Chuan Lei, Tian-Wen Liu, Zhong-Yang Li, Kui Wang, Hai-Yan Jiang, Wen-Jiang Ding. Effects of Solution Treatment on the Microstructure, Tensile Properties, and Impact Toughness of an Al-5.0Mg-3.0Zn-1.0Cu Cast Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 98-110. |
[11] | Jinglin Liu, Qi Song, Lihui Song, Shude Ji, Mingshen Li, Zhen Jia, Kang Yang. A Novel Friction Stir Spot Riveting of Al/Cu Dissimilar Materials [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 135-144. |
[12] | Lin-Yue Jia, Wen-Bo Du, Jin-Long Fu, Zhao-Hui Wang, Ke Liu, Shu-Bo Li, Xian Du. Obtaining Ultra-High Strength and Ductility in a Mg-Gd-Er-Zn-Zr Alloy via Extrusion, Pre-deformation and Two-Stage Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 39-44. |
[13] | Xi Zhao, Fa-Fa Yan, Zhi-Min Zhang, Peng-Cheng Gao, Shu-Chang Li. Influence of Heat Treatment on Precipitation Behavior and Mechanical Properties of Extruded AZ80 Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 54-64. |
[14] | Meichen Liang, Hao Zhang, Lifeng Zhang, Peng Xue, Dingrui Ni, Weizhen Wang, Zongyi Ma, Hengqiang Ye, Zhiqing Yang. Evolution of Quasicrystals and Long-Period Stacking Ordered Structures During Severe Plastic Deformation and Mixing of Dissimilar Mg Alloys Upon Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 12-24. |
[15] | Chao-Yue Zhao, Xian-Hua Chen, Peng Peng, Teng Tu, Andrej Atrens, Fu-Sheng Pan. Microstructures and Mechanical Properties of Mg-xAl-1Sn-0.3Mn (x = 1, 3, 5) Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1217-1225. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||