Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (4): 476-484.DOI: 10.1007/s40195-020-01162-5
Previous Articles Next Articles
Jinsen Tian1, Jiang Ma1, Ming Yan2, Zhuo Chen3, Jun Shen1(), Jing Wu4(
)
Received:
2020-05-28
Revised:
2020-08-22
Accepted:
2020-08-31
Online:
2021-04-10
Published:
2021-03-30
Contact:
Jun Shen,Jing Wu
About author:
Jing Wu, wujinguob@163.comJinsen Tian, Jiang Ma, Ming Yan, Zhuo Chen, Jun Shen, Jing Wu. Orientation Dependence of the Micro-Pillar Compression Strength in an Electron Beam Melted Ti-6Al-4V Alloy[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 476-484.
Add to citation manager EndNote|Ris|BibTeX
C | O | N | H | Fe | Al | V | Y | Others | Ti |
---|---|---|---|---|---|---|---|---|---|
0.01 | 0.09 | 0.02 | 0.003 | 0.18 | 6.42 | 4.13 | 0.001 | <0.4 | Balance |
Table 1 Chemical composition of the Ti64 powders (wt.%)
C | O | N | H | Fe | Al | V | Y | Others | Ti |
---|---|---|---|---|---|---|---|---|---|
0.01 | 0.09 | 0.02 | 0.003 | 0.18 | 6.42 | 4.13 | 0.001 | <0.4 | Balance |
Fig. 1 a BSE image of the horizontal section showing the structure of EBM-fabricated Ti64 alloy; inset showing the schematic drawing of the sample section; b bright-field TEM image showing the overall microstructure and dislocations
Fig. 2 a EBSD orientation map of the horizontal section of the as-fabricated sample; only α phase is used for phase indexation. The parent β boundaries were indicated by white dashed line. b Pole figure of [0001] zone axis corresponding to the area labeled in a. The inverse pole figure indicates the normal directions of the transformed β grains, which is represented by small circles
Micro-pillars | 0.2% yield strength, GPa | 2% flow stress, GPa | 10% flow stress, GPa | Minimum strength needed for dislocation activation* |
---|---|---|---|---|
A | 1.07 | 1.32 | 1.67 | 0.83 |
B | 0.97 | 1.19 | 1.51 | 0.84 |
C | 0.92 | 1.12 | 1.37 | 0.81 |
D | 0.86 | 1.06 | 1.30 | 0.92 |
E | 0.88 | 1.08 | 1.37 | 0.92 |
F | 0.97 | 1.18 | 1.46 | 0.91 |
G | 0.95 | 1.19 | 1.49 | 0.81 |
Table 2 Compression strengths of the micro-pillars calculated from Fig. 4
Micro-pillars | 0.2% yield strength, GPa | 2% flow stress, GPa | 10% flow stress, GPa | Minimum strength needed for dislocation activation* |
---|---|---|---|---|
A | 1.07 | 1.32 | 1.67 | 0.83 |
B | 0.97 | 1.19 | 1.51 | 0.84 |
C | 0.92 | 1.12 | 1.37 | 0.81 |
D | 0.86 | 1.06 | 1.30 | 0.92 |
E | 0.88 | 1.08 | 1.37 | 0.92 |
F | 0.97 | 1.18 | 1.46 | 0.91 |
G | 0.95 | 1.19 | 1.49 | 0.81 |
Fig. 5 TEM results from compressed pillar D: a STEM HAADF image showing the overview deformed structure; b a magnified STEM image showing a localized shear band; c, d TEM bright-field image and the corresponding selected area diffraction patterns of the shear band region
Fig. 6 Deformed morphologies from compressed pillar A: a STEM overview image showing the deformed structure, the inset showing the SEM image and the relative view direction for TEM observation; b magnified STEM image; c, d TEM bright-field images showing the dense dislocations in the α grains
Fig. 7 a, b STEM high angle annular dark field (HAADF) images from compressed pillar E showing large α variants, the dense dislocations appear as white lines and red arrows indicate the slip directions of few slip systems inside two large α variants; c, d STEM HAADF images from compressed pillar B revealing more dispersed β phase (indicated by blue boxes)
Fig. 8 a STEM image of deformed pillar B showing the interaction between β phase and dislocations in α phase. The dislocations appear as white lines and yellow arrows represent the slip directions of two groups of dislocations. The same region under different beam conditions is presented by the green box in b. The β phases were segmented by dislocations transmitted through, and the magenta arrows show the gaps between β segments caused by deformation
[1] | C. Veiga, J.P. Davim, A.J.R. Loureiro, Rev. Adv. Mater. Sci. 32 133 (2012) |
[2] | L.L. Xing, C.C. Zhao, H. Chen, Z.J. Shen, W. Liu, Acta Metall. Sin. -Engl. Lett. 33 981 (2020) |
[3] | D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Int. Mater. Rev. 57 133 (2012) |
[4] |
W.E. Frazier, J. Mater. Eng. Perform. 23 1917 (2014
DOI URL PMID |
[5] | G. Del Guercio, M. Galati, A. Saboori, P. Fino, L. Iuliano, Acta Metall. Sin. -Engl. Lett. 33 183 (2020) |
[6] | C. Wei, X. Ma, X. Yang, M. Zhou, C. Wang, Y. Zheng, W. Zhang, Z. Li, Mater. Lett. 221 111 (2018) |
[7] | Y. Liu, J. Zhang, S.J. Li, W.T. Hou, H. Wang, Q.S. Xu, Y.L. Hao, R. Yang, Acta Metall. Sin. -Engl. Lett. 30 1163 (2017 |
[8] | J. Karlsson, A. Snis, H. Engqvist, J. Lausmaa, J. Mater. Process. Technol. 213 2109 (2013 |
[9] | N. Hrabe, T. Quinn, Mater. Sci. Eng. A. 573 264 (2013) |
[10] | T. Sun, Y. Liu, S.J. Li, J.P. Li, Acta Metall. Sin. -Engl. Lett. 32 869 (2019) |
[11] |
L.E. Murr, E.V. Esquivel, S.A. Quinones, S.M. Gaytan, M.I. Lopez, E.Y. Martinez, F. Medina, D.H. Hernandez, E. Martinez, J.L. Martinez, S.W. Stafford, D.K. Brown, T. Hoppe, W. Meyers, U. Lindhe, R.B. Wicker, Mater. Charact. 60 96 (2009)
DOI URL |
[12] | S.S. Al-Bermani, M.L. Blackmore, W. Zhang, I.J.M. Todd, Metall. Mater. Trans. A 41 3422 (2010 |
[13] | J. Bruno, A. Rochman, G. Cassar, J. Mater. Eng. Perform. 26 692 (2017) |
[14] | A.A. Antonysamy, J. Meyer, P.B. Prangnell, Mater. Charact. 84 153 (2013) |
[15] | A.N. Kalinyuk, N.P. Trigub, V.N. Zamkov, O.M. Ivasishin, P.E. Markovsky, R.V. Teliovich, S.L. Semiatin, Mater. Sci. Eng. A 346 178 (2003) |
[16] |
L.E. Murr, S.A. Quinones, S.M. Gaytan, M.I. Lopez, A. Rodela, E.Y. Martinez, D.H. Hernandez, E. Martinez, F. Medina, R.B. Wicker, J. Mech. Behav. Biomed. Mater. 2 20 (2009)
URL PMID |
[17] | N. Hrabe, T. Quinn, Mater. Sci. Eng. A 573 271 (2013) |
[18] | X. Zhao, S. Li, M. Zhang, Y. Liu, T.B. Sercombe, S. Wang, Y. Hao, R. Yang, L.E. Murr, Mater. Des. 95 21 (2016) |
[19] |
M. Simonelli, Y.Y. Tse, C. Tuck, Mater. Sci. Eng. A 616 1 (2014)
DOI URL |
[20] | B.E. Carroll, T.A. Palmer, A.M. Beese, Acta Mater. 87 309 (2015) |
[21] |
C. de Formanoir, S. Michotte, O. Rigo, L. Germain, S. Godet, Mater. Sci. Eng. A 652 105 (2016)
DOI URL |
[22] | Y. Liu, N. Li, M. Arul Kumar, S. Pathak, J. Wang, R.J. McCabe, N.A. Mara, C.N. Tomé, Acta Mater. 135 411 (2017) |
[23] | I.P. Jones, W.B. Hutchinson, Acta Metall. 29 951 (1981) |
[24] | S.C. Wang, M. Aindow, M.J. Starink, Acta Mater. 51 2485 (2003 |
[25] | S. Suri, G.B. Viswanathan, T. Neeraj, D.H. Hou, M.J. Mills, Acta Mater. 47 1019 (1999 |
[26] | H. Galarraga, R.J. Warren, D.A. Lados, R.R. Dehoff, M.M. Kirka, P. Nandwana, Mater. Sci. Eng. A 685 417 (2017) |
[1] | Hui Xiao, Yu Liu, Kai Wang, Zhipeng Wang, Te Hu, Touwen Fan, Li Ma, Pingying Tang. Effects of Mn Content on Mechanical Properties of FeCoCrNiMnx (0≤x≤0.3) High-Entropy Alloys: A First-Principles Study [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 455-464. |
[2] | Ibrahim Ondicho, Bernard Alunda, Fredrick Madaraka, Melody Chepkoech. Effect of Bimodal Grain Size Distribution on the Strain Hardening Behavior of a Medium-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 465-475. |
[3] | Hua-Zhen Jiang, Zheng-Yang Li, Tao Feng, Peng-Yue Wu, Qi-Sheng Chen, Yun-Long Feng, Long-Fei Chen, Jing-Yu Hou, He-Jian Xu. Effect of Process Parameters on Defects, Melt Pool Shape, Microstructure, and Tensile Behavior of 316L Stainless Steel Produced by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 495-510. |
[4] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. |
[5] | Chun-Hua Ma, Fu-Sheng Pan, Ding-Fei Zhang, Ai-Tao Tang, Zhi-Wen Lu. Effects of Sb Addition on Microstructural Evolution and Mechanical Properties of Mg-9Al-5Sn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 278-288. |
[6] | Hua-Ping Tang, Qu-Dong Wang, Colin Luo, Chuan Lei, Tian-Wen Liu, Zhong-Yang Li, Kui Wang, Hai-Yan Jiang, Wen-Jiang Ding. Effects of Solution Treatment on the Microstructure, Tensile Properties, and Impact Toughness of an Al-5.0Mg-3.0Zn-1.0Cu Cast Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 98-110. |
[7] | Lin-Yue Jia, Wen-Bo Du, Jin-Long Fu, Zhao-Hui Wang, Ke Liu, Shu-Bo Li, Xian Du. Obtaining Ultra-High Strength and Ductility in a Mg-Gd-Er-Zn-Zr Alloy via Extrusion, Pre-deformation and Two-Stage Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 39-44. |
[8] | Xi Zhao, Fa-Fa Yan, Zhi-Min Zhang, Peng-Cheng Gao, Shu-Chang Li. Influence of Heat Treatment on Precipitation Behavior and Mechanical Properties of Extruded AZ80 Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 54-64. |
[9] | Chao-Yue Zhao, Xian-Hua Chen, Peng Peng, Teng Tu, Andrej Atrens, Fu-Sheng Pan. Microstructures and Mechanical Properties of Mg-xAl-1Sn-0.3Mn (x = 1, 3, 5) Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1217-1225. |
[10] | Tianbo Zhao, Yutaka S. Sato, Hiroyuki Kokawa, Kazuhiro Ito. Predicting Tensile Properties of Friction-Stir-Welded 6063 Aluminum with Experimentally Measured Welding Heat Input [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1235-1242. |
[11] | Jia-Qi Zhao, Hua Tian, Zhong Wang, Xue-Jiao Wang, Jun-Wei Qiao. FCC-to-HCP Phase Transformation in CoCrNix Medium-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1151-1158. |
[12] | Qiuxin Nie, Hui Liang, Dongxu Qiao, Zhaoxin Qi, Zhiqiang Cao. Microstructures and Mechanical Properties of Multi-component AlxCrFe2Ni2Mo0.2 High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1135-1144. |
[13] | Ren Li, Jing Ren, Guo-Jia Zhang, Jun-Yang He, Yi-Ping Lu, Tong-Min Wang, Ting-Ju Li. Novel (CoFe2NiV0.5Mo0.2)100-xNbx Eutectic High-Entropy Alloys with Excellent Combination of Mechanical and Corrosion Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1046-1056. |
[14] | Hao Wu, Si-Rui Huang, Cheng-Yan Zhu, Ji-Feng Zhang, He-Guo Zhu, Zong-Han Xie. In Situ TiC/FeCrNiCu High-Entropy Alloy Matrix Composites: Reaction Mechanism, Microstructure and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1091-1102. |
[15] | Kai-Bo Nie, Zhi-Hao Zhu, Paul Munroe, Kun-Kun Deng, Jun-Gang Han. Microstructure, Tensile Properties and Work Hardening Behavior of an Extruded Mg-Zn-Ca-Mn Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 922-936. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||