Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (9): 1173-1200.DOI: 10.1007/s40195-021-01249-7
Mehran Dadkhah1, Mohammad Hossein Mosallanejad1,2, Luca Iuliano3, Abdollah Saboori3()
Received:
2020-12-31
Revised:
2021-03-20
Accepted:
2021-04-14
Online:
2021-09-10
Published:
2021-05-23
Contact:
Abdollah Saboori
About author:
Abdollah Saboori, abdollah.saboori@polito.itMehran Dadkhah, Mohammad Hossein Mosallanejad, Luca Iuliano, Abdollah Saboori. A Comprehensive Overview on the Latest Progress in the Additive Manufacturing of Metal Matrix Composites: Potential, Challenges, and Feasible Solutions[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1173-1200.
Add to citation manager EndNote|Ris|BibTeX
Category | VAT | BJ | MJ | SL | ME | PBF | DED |
---|---|---|---|---|---|---|---|
Process | SLA DLP | 3D printing | Polyject Ink-jetting Thermojet | UC LOM | FDM | SLS SLM EBM | DMD |
Ink-jetting | LD | ||||||
S-Print | LC | ||||||
M-Print | EBDM | ||||||
Materials | Photopolymer Ceramic | Metal | Photopolymer Wax | Metal | Photopolymer Wax | Metal | Metal (powder, wire) |
Ceramic | Ceramic | Ceramic | |||||
Polymer | Hybride | Polymer |
Table 1 ASTM International classification of AM [37]
Category | VAT | BJ | MJ | SL | ME | PBF | DED |
---|---|---|---|---|---|---|---|
Process | SLA DLP | 3D printing | Polyject Ink-jetting Thermojet | UC LOM | FDM | SLS SLM EBM | DMD |
Ink-jetting | LD | ||||||
S-Print | LC | ||||||
M-Print | EBDM | ||||||
Materials | Photopolymer Ceramic | Metal | Photopolymer Wax | Metal | Photopolymer Wax | Metal | Metal (powder, wire) |
Ceramic | Ceramic | Ceramic | |||||
Polymer | Hybride | Polymer |
Manufacturer | System | Process | Layer thickness (μm) | Laser spot size (μm) | Energy source |
---|---|---|---|---|---|
Prima additive | PrintSharp 250 | LPBF | 20-100 | 70-100 | Yb-fibre laser, 500 W |
SLM solutions | SLM500 | LPBF | 20-74 | 80-115 | Quad fibre lasers, 4 $\times$ 700 W |
EOS | M400 | LPBF | N/A | 90 | Yb-fibre laser, 1000 W |
Concept Laser | M1Cusing | LPBF | 20-80 | 50 | Fibre laser, 200-400 W |
Realizer | SLM300i | LPBF | 20-100 | N/A | Fibre laser, 400-1000 W |
Farsoon | FS271 | LPBF | 20-80 | 40-100 | Yb-fibre laser, 200 W |
Renishaw | AM400 | LPBF | N/A | N/A | Optical fibre, 400 W |
Sisma | MYSINT300 | LPBF | 20-50 | 100-500 | Fibre laser, 500 W |
Arcam AB | Q20 plus | EBM | 140 | - | Electron beam, 3000 W |
Arcam AB | A2X | EBM | 50-100 | - | Electron beam, 3000 W |
Arcam AB | Spectra H | EBM | N/A | - | Electron beam, 6000 W |
Table 2 Some commercially available PBF systems for metallic materials
Manufacturer | System | Process | Layer thickness (μm) | Laser spot size (μm) | Energy source |
---|---|---|---|---|---|
Prima additive | PrintSharp 250 | LPBF | 20-100 | 70-100 | Yb-fibre laser, 500 W |
SLM solutions | SLM500 | LPBF | 20-74 | 80-115 | Quad fibre lasers, 4 $\times$ 700 W |
EOS | M400 | LPBF | N/A | 90 | Yb-fibre laser, 1000 W |
Concept Laser | M1Cusing | LPBF | 20-80 | 50 | Fibre laser, 200-400 W |
Realizer | SLM300i | LPBF | 20-100 | N/A | Fibre laser, 400-1000 W |
Farsoon | FS271 | LPBF | 20-80 | 40-100 | Yb-fibre laser, 200 W |
Renishaw | AM400 | LPBF | N/A | N/A | Optical fibre, 400 W |
Sisma | MYSINT300 | LPBF | 20-50 | 100-500 | Fibre laser, 500 W |
Arcam AB | Q20 plus | EBM | 140 | - | Electron beam, 3000 W |
Arcam AB | A2X | EBM | 50-100 | - | Electron beam, 3000 W |
Arcam AB | Spectra H | EBM | N/A | - | Electron beam, 6000 W |
Process | Acronym |
---|---|
Laser cladding | LC |
Laser direct casting | LDC |
Laser engineer net shaping | LENS™ |
Direct metal deposition | DMD |
Direct light fabrication | DLF |
Shape deposition manufacturing | SDM |
Laser powder fusion | LPF |
Laser-aided direct metal deposition | LADMD |
Laser-aided manufacturing process | LAMP |
Table 3 Different commercialized names of DED process [34, 90]
Process | Acronym |
---|---|
Laser cladding | LC |
Laser direct casting | LDC |
Laser engineer net shaping | LENS™ |
Direct metal deposition | DMD |
Direct light fabrication | DLF |
Shape deposition manufacturing | SDM |
Laser powder fusion | LPF |
Laser-aided direct metal deposition | LADMD |
Laser-aided manufacturing process | LAMP |
Differences | SLM Process | EBM Process | DED Process |
---|---|---|---|
Heat source | Laser | Electron beam | Laser/Electron beam/Electric arc |
Source of power (W) | 200-1000 | 3000 | 100-3000 |
Size of beam (mm) | 0.1-0.5 | 0.2-1.0 | 2-4 |
Environment of build chamber | Ar/N2 | Vacuum/He bleed | - |
Max dimension of component (mm $\times$ mm $\times$ mm) | 500 $\times$ 350 $\times$ 300 | 350 $\times$ 380 ($\phi \times H$) | (2000 $\times$ 1500 $\times$ 750) (5000 $\times$ 3000 $\times$ 1000) |
Build envelop | Limited | Limited | Large, Flexible |
Build ability | Complex geometry, very high resolution | Complex geometry, good resolution | Relatively simpler geometry, less resolution |
Layer thickness (µm) | 20-100 | 50-200 | 500-1000 |
Maximum rate of feedstock (g/s) | - | - | 0.1-2.8 |
Maximum rate of production (cm3h-1) | 20-35 | 80 | 16-320 |
Maximum feature size (µm) | 40-200 | 100 | 40-200 |
Dimensional precision of (mm) | 0.04-0.2 | 0.04-0.2 | 0.5-1.5 |
Surface finishing | Very good | Good | Coarse |
Geometric tolerance | ± 0.05-0.1 | ± 0.2 | - |
Residual stress | High | Minimal | High |
Addition of metal on existing parts | Not possible | Not possible | Possible |
Build of multi-material/Hard coating | Not possible | Not possible | Possible |
Post-processing | Stress relieve, HIP (rarely) | HIP (rarely) | Stress relieve, HIP, Machining, Surface grinding |
Resolution range (µm) | 80-250 | 80-250 | 250 |
Preheating process of powder | Platform heating | Preheat scanning | Platform heating |
Preheating temperature of powder (°C) | 100-200 | 700-1100 | - |
Size of melting pool (mm) | 0.1-0.5 | 0.2-1.2 | - |
Advantages | Fine resolution High quality | Reduced cost of manufacturing Great mechanical properties Precise control of microstructure and composition Excellent for repairing and retrofitting | |
Disadvantages | Slow printing Expensive manufacturing | Low accuracy and quality of surface Restriction in manufacturing of complex parts including fine details | |
Applications | Biomedical, Electronics, Aerospace, Electro-packaging | Aerospace, Automotive, Die repair |
Table 4 Comparison of DED and PBF processes [90, 92,93,94,95,96,97]
Differences | SLM Process | EBM Process | DED Process |
---|---|---|---|
Heat source | Laser | Electron beam | Laser/Electron beam/Electric arc |
Source of power (W) | 200-1000 | 3000 | 100-3000 |
Size of beam (mm) | 0.1-0.5 | 0.2-1.0 | 2-4 |
Environment of build chamber | Ar/N2 | Vacuum/He bleed | - |
Max dimension of component (mm $\times$ mm $\times$ mm) | 500 $\times$ 350 $\times$ 300 | 350 $\times$ 380 ($\phi \times H$) | (2000 $\times$ 1500 $\times$ 750) (5000 $\times$ 3000 $\times$ 1000) |
Build envelop | Limited | Limited | Large, Flexible |
Build ability | Complex geometry, very high resolution | Complex geometry, good resolution | Relatively simpler geometry, less resolution |
Layer thickness (µm) | 20-100 | 50-200 | 500-1000 |
Maximum rate of feedstock (g/s) | - | - | 0.1-2.8 |
Maximum rate of production (cm3h-1) | 20-35 | 80 | 16-320 |
Maximum feature size (µm) | 40-200 | 100 | 40-200 |
Dimensional precision of (mm) | 0.04-0.2 | 0.04-0.2 | 0.5-1.5 |
Surface finishing | Very good | Good | Coarse |
Geometric tolerance | ± 0.05-0.1 | ± 0.2 | - |
Residual stress | High | Minimal | High |
Addition of metal on existing parts | Not possible | Not possible | Possible |
Build of multi-material/Hard coating | Not possible | Not possible | Possible |
Post-processing | Stress relieve, HIP (rarely) | HIP (rarely) | Stress relieve, HIP, Machining, Surface grinding |
Resolution range (µm) | 80-250 | 80-250 | 250 |
Preheating process of powder | Platform heating | Preheat scanning | Platform heating |
Preheating temperature of powder (°C) | 100-200 | 700-1100 | - |
Size of melting pool (mm) | 0.1-0.5 | 0.2-1.2 | - |
Advantages | Fine resolution High quality | Reduced cost of manufacturing Great mechanical properties Precise control of microstructure and composition Excellent for repairing and retrofitting | |
Disadvantages | Slow printing Expensive manufacturing | Low accuracy and quality of surface Restriction in manufacturing of complex parts including fine details | |
Applications | Biomedical, Electronics, Aerospace, Electro-packaging | Aerospace, Automotive, Die repair |
Fig. 5 Central schematic represents an overview of the AM: a unreinforced Al7075 powder, b reinforced Al7075 powder, c Al7075 tend to solidify by columnar growth of dendrites, d suitable nanoparticles can induce heterogeneous nucleation and facilitate equiaxed grain growth, e many alloys exhibit intolerable microstructure with large grains and periodic cracks when AM using conventional approaches, as illustrated by the inverse pole figure, f functionalizing the powder feedstock with nanoparticles produces fine equiaxed grain growth and eliminates hot cracking [102]
Fig. 6 EBSD images of block specimen at different energy densities: a 44 J/mm3, b 66 J/mm3, c 111 J/mm3, d 222 J/mm3, e 333 J/mm3, and f 375 J/mm3 [112]
Fig. 8 a Scanning TEM (STEM) high-angle annular dark-field (HAADF) image showing the diamond(111)/Al interfacial area where Al4C3 interfacial layer and plate-like particles are developed, b the EDX spectrum of a typical interfacial particle is shown, c-f are elemental EDX maps for Al, O, Si, and C, respectively [118]
Matrix | Reinforcement | Process | Features | Ref. | |
---|---|---|---|---|---|
Type | Content | ||||
Al | Al13Fe4 | - | DED | UTS: 205-240 MPa | [ |
El: 1-3.8% | |||||
Hardness: 70-85 HV | |||||
AlSi10Mg | Graphene | 0.1-0.12 wt% | LPBF | YS: 22% increment (0.1 wt%) | [ |
Hardness: 30% increment | |||||
TiN | 2 wt% | LPBF | COF: reduce to 0.43 | [ | |
Wear rate: 1.4 ± 0.23 $\times$ 10 -3mm3 N-1 m-1 | |||||
Hardness: 145 ± 4.9 HV | |||||
TiB2 | - | DED | Porosity is decreased | [ | |
Vickers hardness is increased | |||||
SiC | 8.5 vol% | LPBF | Hardness: 2.27 GPa | [ | |
Elastic modulus: 78.94 MPa | |||||
Graphene | 0.5 wt% | LPBF | Wear resistance is improved | [ | |
COF is deceased | |||||
Microhardness is increased | |||||
CNT | 0.5 wt% | LPBF | Microhardness: 154.12 HV | [ | |
Tensile strength: 420.8 MPa | |||||
Elongation: 8.8% | |||||
TiN | 4 wt% | LPBF | UTS: 491.2 MPa | [ | |
YS: 315.4 MPa | |||||
El: 7.5% | |||||
SiC | - | LPBF | Relative density: 97.2% | [ | |
Microhardness: 218.5 HV0.1 | |||||
19% reduction in COF | |||||
TiN | 2 wt% | LPBF | Microhardness: 138-145 HV0.1 | [ | |
COF: 0.4-0.5 | |||||
Al-3.5Cu-1.5 Mg-1Si | TiB2 | 5 vol% | LPBF | YCS: 191 MPa | [ |
UCS: ≈ 500 MPa |
Table 5 Summary of the effect of different reinforcements on the characteristics of the AMCs
Matrix | Reinforcement | Process | Features | Ref. | |
---|---|---|---|---|---|
Type | Content | ||||
Al | Al13Fe4 | - | DED | UTS: 205-240 MPa | [ |
El: 1-3.8% | |||||
Hardness: 70-85 HV | |||||
AlSi10Mg | Graphene | 0.1-0.12 wt% | LPBF | YS: 22% increment (0.1 wt%) | [ |
Hardness: 30% increment | |||||
TiN | 2 wt% | LPBF | COF: reduce to 0.43 | [ | |
Wear rate: 1.4 ± 0.23 $\times$ 10 -3mm3 N-1 m-1 | |||||
Hardness: 145 ± 4.9 HV | |||||
TiB2 | - | DED | Porosity is decreased | [ | |
Vickers hardness is increased | |||||
SiC | 8.5 vol% | LPBF | Hardness: 2.27 GPa | [ | |
Elastic modulus: 78.94 MPa | |||||
Graphene | 0.5 wt% | LPBF | Wear resistance is improved | [ | |
COF is deceased | |||||
Microhardness is increased | |||||
CNT | 0.5 wt% | LPBF | Microhardness: 154.12 HV | [ | |
Tensile strength: 420.8 MPa | |||||
Elongation: 8.8% | |||||
TiN | 4 wt% | LPBF | UTS: 491.2 MPa | [ | |
YS: 315.4 MPa | |||||
El: 7.5% | |||||
SiC | - | LPBF | Relative density: 97.2% | [ | |
Microhardness: 218.5 HV0.1 | |||||
19% reduction in COF | |||||
TiN | 2 wt% | LPBF | Microhardness: 138-145 HV0.1 | [ | |
COF: 0.4-0.5 | |||||
Al-3.5Cu-1.5 Mg-1Si | TiB2 | 5 vol% | LPBF | YCS: 191 MPa | [ |
UCS: ≈ 500 MPa |
Fig. 11 Schematic representation of the formation of the TiB phase through an in situ reaction between Ti and TiB2: a starting powder mixture showing the fine distribution of TiB2 particles surrounding the larger Ti powders before sintering, b in situ formed needle-shaped TiB as well as semi-formed TiB, and unreacted TiB2 particles during sintering [137]
Matrix | Reinforcement | Process | Features | Ref. | ||
---|---|---|---|---|---|---|
Type | Content | |||||
Ti-6Al-4V | - | - | DED | UTS: 1091.0 MPa | [ | |
El: 5.52(%) | ||||||
B4C | 5.3 vol% | DED | YS: 1190 MPa | [ | ||
UTS:1190 MPa | ||||||
El: 0.3% | ||||||
TiC | 0.9 vol% | DED | YS: 1080 MPa | [ | ||
UCS: 1403 MPa | ||||||
CS: 28.2% | ||||||
TiC | 15 vol% | DED | UTS: 1636 MPa | [ | ||
True strain: 0.141 | ||||||
TiC | 13.8 vol% | EBM | UTS: 950 MPa | [ | ||
El: 6.0% | ||||||
TiCp | 5-50 vol% | DED | Vickers Microhardness: 379.77-736.71 | [ | ||
HA | 5 wt% | EBM | Tensile strength: 123 MPa | [ | ||
El: 5.5% | ||||||
CS: 875 MPa | ||||||
Vickers hardness: 6.8 GPa | ||||||
CNTs | 0.8 vol% | DED | YS: 1162 MPa | [ | ||
UTS: 1255 MPa | ||||||
El: 3.2% | ||||||
TiB2 | - | DED | Hardness: 440-480 HV | [ | ||
B4C | 1 wt% | LPBF | Vickers microhardness: 546 ± 7 HV | [ | ||
UCS: 1747 ± 42 MPa | ||||||
Maximum true strain: 14.2 ± 1.2% | ||||||
B4C | 0.5 wt% | LPBF | Vickers microhardness: 458 ± 5 HV | |||
UCS: 1535 ± 18 MPa | ||||||
Maximum true strain: 19.3 ± 0.3% | ||||||
Ti | TiB | 8.35 vol% | LPBF | Vickers microhardness: 402 ± 7 HV | [ | |
UCS: 1421 ± 47 MPa | ||||||
Maximum true strain: 17.8 ± 3.2% | ||||||
TiC | 5 wt% | LPBF | Density: 98.2% | [ | ||
UTS: 914 MPa | ||||||
El: 18.3% | ||||||
TiB | LPBF | YS: 1103 MPa | [ | |||
UTS: 1421 MPa | ||||||
Vickers hardness: 402 HV | ||||||
TiB | DED | YS: 940-1010 MPa | [ | |||
UTS: 1016-1092 MPa | ||||||
El: 26.5-36.5% | ||||||
TiB | LPBF | Nanohardness: 4.75-3.33 GPa | [ | |||
Er: 153-122 GPa | ||||||
TiB | 2.5-7.5 wt% | LPBF | Harndess: 435 ± 14.7 HV0.2 (for the sample with 7.5 wt% TiB) | [ | ||
SiC | 23.8 vol% | LPBF | Microhardness: 980.3 HV0.2 | [ | ||
Friction coefficient: 0.2 | ||||||
Wear rate: 1.42 $\times$ 10-4 mm/Nm | ||||||
SiC | 20, 30, 40 wt% | LPBF | Hardness: 11-17 GPa Wear rate: 3.99 $\times$ 10-7-9.51 $\times$ 10-7 g/Nm | [ | ||
SiC | 30 wt% | LPBF | [ | |||
SiC | DED | 300 W, 20 mm/s | Wear rate: 6.60 $\times$ 10-4 g/Nm | [ | ||
Microhardness: 976 ± 71 HV | ||||||
400 W, 10 mm/s | Wear rate: 511 ± 63 $\times$ 10-4 g/Nm | |||||
Microhardness: 1167 ± 194 HV |
Table 6 Summary of research on TMCs produced via different AM processes
Matrix | Reinforcement | Process | Features | Ref. | ||
---|---|---|---|---|---|---|
Type | Content | |||||
Ti-6Al-4V | - | - | DED | UTS: 1091.0 MPa | [ | |
El: 5.52(%) | ||||||
B4C | 5.3 vol% | DED | YS: 1190 MPa | [ | ||
UTS:1190 MPa | ||||||
El: 0.3% | ||||||
TiC | 0.9 vol% | DED | YS: 1080 MPa | [ | ||
UCS: 1403 MPa | ||||||
CS: 28.2% | ||||||
TiC | 15 vol% | DED | UTS: 1636 MPa | [ | ||
True strain: 0.141 | ||||||
TiC | 13.8 vol% | EBM | UTS: 950 MPa | [ | ||
El: 6.0% | ||||||
TiCp | 5-50 vol% | DED | Vickers Microhardness: 379.77-736.71 | [ | ||
HA | 5 wt% | EBM | Tensile strength: 123 MPa | [ | ||
El: 5.5% | ||||||
CS: 875 MPa | ||||||
Vickers hardness: 6.8 GPa | ||||||
CNTs | 0.8 vol% | DED | YS: 1162 MPa | [ | ||
UTS: 1255 MPa | ||||||
El: 3.2% | ||||||
TiB2 | - | DED | Hardness: 440-480 HV | [ | ||
B4C | 1 wt% | LPBF | Vickers microhardness: 546 ± 7 HV | [ | ||
UCS: 1747 ± 42 MPa | ||||||
Maximum true strain: 14.2 ± 1.2% | ||||||
B4C | 0.5 wt% | LPBF | Vickers microhardness: 458 ± 5 HV | |||
UCS: 1535 ± 18 MPa | ||||||
Maximum true strain: 19.3 ± 0.3% | ||||||
Ti | TiB | 8.35 vol% | LPBF | Vickers microhardness: 402 ± 7 HV | [ | |
UCS: 1421 ± 47 MPa | ||||||
Maximum true strain: 17.8 ± 3.2% | ||||||
TiC | 5 wt% | LPBF | Density: 98.2% | [ | ||
UTS: 914 MPa | ||||||
El: 18.3% | ||||||
TiB | LPBF | YS: 1103 MPa | [ | |||
UTS: 1421 MPa | ||||||
Vickers hardness: 402 HV | ||||||
TiB | DED | YS: 940-1010 MPa | [ | |||
UTS: 1016-1092 MPa | ||||||
El: 26.5-36.5% | ||||||
TiB | LPBF | Nanohardness: 4.75-3.33 GPa | [ | |||
Er: 153-122 GPa | ||||||
TiB | 2.5-7.5 wt% | LPBF | Harndess: 435 ± 14.7 HV0.2 (for the sample with 7.5 wt% TiB) | [ | ||
SiC | 23.8 vol% | LPBF | Microhardness: 980.3 HV0.2 | [ | ||
Friction coefficient: 0.2 | ||||||
Wear rate: 1.42 $\times$ 10-4 mm/Nm | ||||||
SiC | 20, 30, 40 wt% | LPBF | Hardness: 11-17 GPa Wear rate: 3.99 $\times$ 10-7-9.51 $\times$ 10-7 g/Nm | [ | ||
SiC | 30 wt% | LPBF | [ | |||
SiC | DED | 300 W, 20 mm/s | Wear rate: 6.60 $\times$ 10-4 g/Nm | [ | ||
Microhardness: 976 ± 71 HV | ||||||
400 W, 10 mm/s | Wear rate: 511 ± 63 $\times$ 10-4 g/Nm | |||||
Microhardness: 1167 ± 194 HV |
Fig. 12 a Particle shape and morphology of the starting TiB2 powder, b TEM images showing the microstructures of the SLM-processed Ti-TiB composite showing needle-shaped TiB particles embedded in a matrix of α-Ti grains with lamellar structure [146]
Fig. 14 High-magnitude morphologies of microstructures located on the top surface of LPBF-processed B4C/Ti composite parts at different laser power: a 125 W, 800 mm/s; b 150 W, 800 mm/s [158]
Fig. 20 Comparison of open-cellular, mesh design models (unit cells) and corresponding EBM-fabricated mesh structures in decreasing order of density. a Octet truss, b G structure 3 (G3), c Rhombic dodecahedron, d Dode medium [142]
Fig. 21 TEM images of the printed composite: a bright-field (BF) micrograph, b morphology and distribution of reinforcements, c morphology of reinforcements replicated from the matrix and the SAED pattern of a TiC nanoparticle, d morphology and distribution of TiC nanoplatelets and the corresponding SAED pattern [143]
Fig. 22 a Tensile stress-strain curves of as-printed Ti-6Al-4V alloy and composite, b SEM fractography of the tensile fractured composite, c schematic illustration of the strengthening [143]
Composite | Reinforcement | Process | Features | Ref. | |
---|---|---|---|---|---|
Type | Content | ||||
316L stainless steel | TiB2 (nanoparticles) | 0-10 vol% | LPBF | CYS = 980.9 ± 10.9 MPa (for samples with 10 vol% TiB2) | [ |
316L stainless steel | SiC | 4-16 wt% | DED | Microhardness: 362-974 HV | [ |
Corrosion current density: Increased | |||||
Corrosion resistance: Decreased | |||||
Stainless steel | V | 12 wt% | DED | Microhardness: 521 ± 9-603 ± 12 HV | [ |
Ware rate: 5.011 $\times$ 10-6 mm3/N m | |||||
316L stainless steel | TiN | 1-10 wt% | LPBF | [ | |
316L stainless steel (coating) | TiC | 20-80 wt% | DED | [ | |
Inconel 625 | SiC, Al2O3, TiC | 5 wt% | DED | IN625/SiC: 130% increase of hardness, increase of porosity and cracking | [ |
IN625/Al2O3: No significant change in density and hardness | |||||
IN625/TiC: 30% increase of hardness | |||||
Inconel 625 | TiC (nanoparticles) | 4 wt% | LPBF | Enhanced oxidation properties | [ |
Inconel 718 | TiC (nanoparticles) | 0.5 wt% | LPBF | Tensile strength: 1370 MPa (after ageing heat treatment) | [ |
(HY282) superalloy | SiC | DED | Graded microstructure | [ | |
Hardness gradient: from 200 HV (bottom) to ~ 800 HV (top) | |||||
Copper | Diamond | 25 vol% | DED | Relatively dense: 96% | [ |
Thermal conductivity: 330 W/m K | |||||
Ti-6Al-4V | HA | 5 wt% | EBM | Tensile strength: 123 MPa | [ |
Maximum compressive strength: 875 MPa |
Table 7 Some of the non-Ti/Al-based MMCs produced via different AM processes
Composite | Reinforcement | Process | Features | Ref. | |
---|---|---|---|---|---|
Type | Content | ||||
316L stainless steel | TiB2 (nanoparticles) | 0-10 vol% | LPBF | CYS = 980.9 ± 10.9 MPa (for samples with 10 vol% TiB2) | [ |
316L stainless steel | SiC | 4-16 wt% | DED | Microhardness: 362-974 HV | [ |
Corrosion current density: Increased | |||||
Corrosion resistance: Decreased | |||||
Stainless steel | V | 12 wt% | DED | Microhardness: 521 ± 9-603 ± 12 HV | [ |
Ware rate: 5.011 $\times$ 10-6 mm3/N m | |||||
316L stainless steel | TiN | 1-10 wt% | LPBF | [ | |
316L stainless steel (coating) | TiC | 20-80 wt% | DED | [ | |
Inconel 625 | SiC, Al2O3, TiC | 5 wt% | DED | IN625/SiC: 130% increase of hardness, increase of porosity and cracking | [ |
IN625/Al2O3: No significant change in density and hardness | |||||
IN625/TiC: 30% increase of hardness | |||||
Inconel 625 | TiC (nanoparticles) | 4 wt% | LPBF | Enhanced oxidation properties | [ |
Inconel 718 | TiC (nanoparticles) | 0.5 wt% | LPBF | Tensile strength: 1370 MPa (after ageing heat treatment) | [ |
(HY282) superalloy | SiC | DED | Graded microstructure | [ | |
Hardness gradient: from 200 HV (bottom) to ~ 800 HV (top) | |||||
Copper | Diamond | 25 vol% | DED | Relatively dense: 96% | [ |
Thermal conductivity: 330 W/m K | |||||
Ti-6Al-4V | HA | 5 wt% | EBM | Tensile strength: 123 MPa | [ |
Maximum compressive strength: 875 MPa |
Fig. 24 Change in a microhardness, b potentiodynamic polarization curves of 316L stainless steel SiC composites with the amount of SiC. The polarization test is carried out in 3.5 wt% NaCl solution while being exposed to air, and samples A, B, C, and D contain 4, 8, 12, and 16 wt% SiC, respectively [159]
Fig. 25 a SEM image of the stainless steel composite reinforced with 12 wt% V, b EDS line of the VC precipitate, c microhardness of the samples, d the wear behaviour of the samples. Specimens 1, 2, and 3, respectively, contain 9, 12, and 15 wt% V [161]
Fig. 26 a Optical microscope photographs of monolithic and composite sections, at 2.5 $\times$ magnification, b Vickers hardness of the monolithic and composite samples [164]
[1] |
M. Dadkhah, A. Saboori, P. Fino, Materials (Basel) 12, 2823 (2019)
DOI URL |
[2] |
A. Saboori, S.K. Moheimani, M. Dadkhah, M. Pavese, C. Badini, P. Fino, Metals (Basel). 8, 172 (2018)
DOI URL |
[3] | M. Yakout, M.A. Elbestawi, in 6th International Conference on Virtual Machining Process Technology (Montréal, 2017) |
[4] |
S.K. Moheimani, M. Dadkhah, M.H. Mosallanejad, A. Saboori, Metals (Basel) 11, 125 (2021)
DOI URL |
[5] |
W.H. Yu, S.L. Sing, C.K. Chua, C.N. Kuo, X.L. Tian, Prog. Mater. Sci. 104, 330 (2019)
DOI |
[6] | S.A. Sajjadi, H.R. Ezatpour, H. Beygi, Mater. Sci. Eng. A 528, 8765 (2011) |
[7] |
S.A. Sajjadi, H.R. Ezatpour, M.T. Parizi, Mater. Des. 34, 106 (2012)
DOI URL |
[8] |
A. Saboori, E. Padovano, M. Pavese, C. Badini, Materials (Basel) 11, 171 (2018)
DOI URL |
[9] | A. Saboori, E. Padovano, M. Pavese, H. Dieringa, C. Badini, Mater (Basel) 10, 1380 (2017) |
[10] |
F. Barati, M. Latifi, E. Moayeri far, M.H. Mosallanejad, A. Saboori, Materials (Basel) 12, 3976 (2019)
DOI URL |
[11] | J.P. Tu, W. Rong, S.Y. Guo, Y.Z. Yang, Wear 255, 832 (2003) |
[12] |
R.R. Zheng, Y. Wu, S.L. Liao, W.Y. Wang, W.B. Wang, A.H. Wang, J. Alloys Compd. 590, 168 (2014)
DOI URL |
[13] |
K. Chu, Z. Liu, C. Jia, H. Chen, X. Liang, W. Gao, J. Alloy. Compd. 490, 453 (2010)
DOI URL |
[14] |
A. Saboori, R. Casati, A. Zanatta, M. Pavese, C. Badini, M. Vedani, Powder Metall. Met. Ceram. 56, 647 (2018)
DOI URL |
[15] |
S. Dadbakhsh, R. Mertens, L. Hao, J. Van Humbeeck, J.P. Kruth, Adv. Eng. Mater. 21, 1801244 (2019)
DOI URL |
[16] | A.K. Ghosh, Solid State Processing, in Fundamentals of Metal-Matrix Composites. ed. by S. Suresh, A. Mortensen, A. Needleman, Butterworth-Heinmann, 1993), pp. 23-41 |
[17] |
A. Saboori, M. Dadkhah, P. Fino, M. Pavese, Metals (Basel). 8, 423 (2018)
DOI URL |
[18] | J. Savolainen, M. Collan, Addit. Manuf. 32, 101070 (2020) |
[19] | C. W. Hull, U.S. Patent 4,575,330 A, March 1986 |
[20] | J.S. Gero, M.L. Maher, in Third International Round Table Conference on Computational Models of Creative design, (Key Centre of Design Computing at the University of Sydney, Heron Island, Queensland, Australia, 1995) |
[21] |
C. Chu, G. Graf, D.W. Rosen, Comput. Aided Des. Appl. 5, 686 (2008)
DOI URL |
[22] |
O. Ivanova, C. Williams, T. Campbell, Rapid Prototyp. J. 19, 353 (2013)
DOI URL |
[23] | J.O. Milewski, Understanding Metals for Additive Manufacturing, in Additive Manufacturing of Metals, (Springer International Publishing, 2017), pp. 7-33 |
[24] |
P. Wu, J. Wang, X. Wang, Autom. Constr. 68, 21 (2016)
DOI URL |
[25] |
J.W. Stansbury, M.J. Idacavage, Dent. Mater. 32, 54 (2016)
DOI PMID |
[26] |
M.S.K.K.Y. Nartu, S.A. Mantri, M.V. Pantawane, Y.H. Ho, B. McWilliams, K. Cho, N.B. Dahotre, R. Banerjee, Scr. Mater. 183, 28 (2020)
DOI URL |
[27] |
C. Doñate-Buendía, F. Frömel, M.B. Wilms, R. Streubel, J. Tenkamp, T. Hupfeld, M. Nachev, E. Gökce, A. Weisheit, S. Barcikowski, F. Walther, J.H. Schleifenbaum, B. Gökce, Mater. Des. 154, 360 (2018)
DOI URL |
[28] | M.P. Behera, T. Dougherty, S. Singamneni, Procedia Manuf. 30, 159 (2019) |
[29] |
B. AlMangour, D. Grzesiak, J.M. Yang, Powder Technol. 309, 37 (2017)
DOI URL |
[30] | D. Gu, H. Wang, G. Zhang, Metall. Mater. Trans. A 45, 464 (2014) |
[31] | D. Gu, C. Ma, M. Xia, D. Dai, Q. Shi, Engineering 3, 675 (2017) |
[32] |
A. Ramakrishnan, G.P. Dinda, Mater. Des. 179, 107877 (2019)
DOI URL |
[33] | S. Pouzet, P. Peyre, C. Gorny, O. Castelnau, T. Baudin, F. Brisset, C. Colin, P. Gadaud, Mater. Sci. Eng. A 677, 171 (2016) |
[34] |
A. Saboori, D. Gallo, S. Biamino, P. Fino, M. Lombardi, Appl. Sci. 7, 883 (2017)
DOI URL |
[35] |
A. Saboori, A. Aversa, G. Marchese, S. Biamino, M. Lombardi, P. Fino, Appl. Sci. 9, 3316 (2019)
DOI URL |
[36] | N. Shamsaei, A. Yadollahi, L. Bian, S.M. Thompson, Addit. Manuf. 8, 12 (2015) |
[37] | A. Standard, F2792. 2012. Standard terminology for additive manufacturing technologies, ASTM F2792-10e1. (2012) |
[38] |
N. Guo, M.C. Leu, Front. Mech. Eng. 8, 215 (2013)
DOI URL |
[39] | A. others Standard, Standard terminology for additive manufacturing technologies, ASTM Int. F2792-12a. (2012) |
[40] |
M.H. Mosallanejad, B. Niroumand, A. Aversa, D. Manfredi, A. Saboori, J. Alloys Compd. 857, 157558 (2020)
DOI URL |
[41] |
F.I. Azam, A.M. Abdul Rani, K. Altaf, T.V.V.L.N. Rao, H.A. Zaharin, in, IOP Conference Series: Materials Science and Engineering, vol. 328(2018), p. 012005
DOI URL |
[42] |
M.H. Mosallanejad, B. Niroumand, A. Aversa, A. Saboori, J. Alloys Compd. 872, 159567 (2021)
DOI URL |
[43] |
I. Yadroitsev, P. Bertrand, I. Smurov, Appl. Surf. Sci. 253, 8064 (2007)
DOI URL |
[44] | S. Bremen, W. Meiners, A. Diatlov, Laser Tech. 9, 33 (2012) |
[45] | E. Yasa, J. Kruth, Adv. Prod. Eng. Manag. 6, 259 (2011) |
[46] | W. Sames, F. Medina, W. Peter, S. Babu, R.R. Dehoff, in,8th International Symposium on Superalloy 718 and Derivatives, pp. 409-423 |
[47] |
X. Zhang, C.J. Yocom, B. Mao, Y.L. Liao, J. Laser Appl. 31, 31201 (2019)
DOI URL |
[48] |
Y. Song, Y. Yan, R. Zhang, D. Xu, F. Wang, J. Mater. Process. Technol. 120, 237 (2002)
DOI URL |
[49] | W.W. Wits, S.J. Weitkamp, J. van Es, Procedia CIRP 7, 252 (2013) |
[50] |
S. Hou, S. Qi, D.A. Hutt, J.R. Tyrer, M. Mu, Z. Zhou, J. Mater. Process. Technol. 254, 310 (2018)
DOI URL |
[51] |
M. Wong, I. Owen, C.J. Sutcliffe, Heat Transf. Eng. 30, 1068 (2009)
DOI URL |
[52] |
M. Zenou, O. Ermak, A. Saar, Z. Kotler, J. Phys. D. Appl. Phys. 47, 25501 (2013)
DOI URL |
[53] | T.K.M.K. HayashiMaekawaTamuraHanyu, JSME Int. J. Ser. A Solid Mech. Mater. Eng. 48, 369 (2005) |
[54] | D.A. Hollander, M. von Walter, T. Wirtz, R. Sellei, B. Schmidt-Rohlfing, O. Paar, H.J. Erli, Biomaterials 27, 955 (2006) |
[55] |
M. Kanazawa, M. Iwaki, S. Minakuchi, N. Nomura, J. Prosthet. Dent. 112, 1441 (2014)
DOI PMID |
[56] |
D. Lin, C.R. Liu, G.J. Cheng, Acta Mater. 80, 183-193 (2014)
DOI URL |
[57] |
D. Lin, C. Ye, Y. Liao, S. Suslov, R. Liu, G.J. Cheng, J. Appl. Phys. 113(13), 133509 (2013)
DOI URL |
[58] |
D. Lin, C. Richard Liu, G.J. Cheng, J. Appl. Phys. 115(11), 113513 (2014)
DOI URL |
[59] |
Z.H. Liu, D.Q. Zhang, S.L. Sing, C.K. Chua, L.E. Loh, Mater. Charact. 94, 116 (2014)
DOI URL |
[60] | M. Erdal, S. Dag, Y. Jande, C.M. Tekin, Materials Science Forum, Multiscale, in Multifunct. Funct. Graded Mater., (Trans Tech Publications Ltd, 2010), pp. 253-258 |
[61] |
V.E. Beal, P. Erasenthiran, C.H. Ahrens, P. Dickens, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 221, 945 (2007)
DOI URL |
[62] |
D. Gu, Y.C. Hagedorn, W. Meiners, G. Meng, R.J.S. Batista, K. Wissenbach, R. Poprawe, Acta Mater. 60, 3849 (2012)
DOI URL |
[63] | R. Larson, U.S. Patent 5,786,562, July 1998 |
[64] |
W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, S.S. Babu, Int. Mater. Rev. 61, 315 (2016)
DOI URL |
[65] | L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, R.B. Wicker, J. Mater. Sci. Technol. 28, 1 (2012) |
[66] | L. Loeber, S. Biamino, U. Ackelid, S. Sabbadini, P. Epicoco, P. Fino, J. Eckert, in, Solid Freeform Fabrication Symposium (Conference paper of 22nd International symposium Solid freeform fabrication proceedings, University of Texas, Texas, Austin, 2011), pp. 547-556 |
[67] |
J. Karlsson, A. Snis, H. Engqvist, J. Lausmaa, J. Mater. Process. Technol. 213, 2109 (2013)
DOI URL |
[68] | J.K. Algardh, T. Horn, H. West, R. Aman, A. Snis, H. Engqvist, J. Lausmaa, O. Harrysson, Addit. Manuf. 12, 45 (2016) |
[69] | V. Petrovic, R. Ninerola, Aircr. Eng. Aerosp. Technol. Int. J. 87, 147 (2015) |
[70] | A. Saboori, A. Abdi, S.A. Fatemi, G. Marchese, S. Biamino, H. Mirzadeh, Mater. Sci. Eng. A 792, 139822 (2020) |
[71] | H.P. Tang, M. Qian, N. Liu, X.Z. Zhang, G.Y. Yang, J. Wang, JOM 67, 555 (2015) |
[72] | G. Del Guercio, M. Galati, A. Saboori, P. Fino, L. Iuliano, Acta Metall. Sin. Engl. Lett. 33, 183 (2020) |
[73] | J. Wang, H. Tang, Mater. Technol. 31, 86 (2016) |
[74] |
L.E. Murr, S.M. Gaytan, A. Ceylan, E. Martinez, J.L. Martinez, D.H. Hernandez, B.I. Machado, D.A. Ramirez, F. Medina, S. Collins, R.B. Wicker, Acta Mater. 58, 1887 (2010)
DOI URL |
[75] | S. Biamino, A. Penna, U. Ackelid, S. Sabbadini, O. Tassa, P. Fino, M. Pavese, P. Gennaro, C. Badini, Intermetallics 19, 776 (2011) |
[76] | H.P. Tang, G.Y. Yang, W.P. Jia, W.W. He, S.L. Lu, M. Qian, Mater. Sci. Eng. A 636, 103 (2015) |
[77] | J. Schwerdtfeger, C. Körner, Intermetallics 49, 29 (2014) |
[78] | P. Drescher, H. Seitz, RTeJournal-Fachforum Fur Rapid Technol. 2015, 1(2015) |
[79] | A. L. A , L.E. Rännar, M. Bäckström, in, Proceedings of the International Conference on Additive Manufacturing and 3D Printing (Nottingham, 2013) |
[80] |
G. Del Guercio, M. Galati, A. Saboori, Met. Mater. Int. 27, 55 (2021)
DOI URL |
[81] | L.E. Rännar, A. Koptyug, J. Olsén, K. Saeidi, Z. Shen, Addit. Manuf. 17, 106 (2017) |
[82] |
Y. Zhong, L.E. Rännar, S. Wikman, A. Koptyug, L. Liu, D. Cui, Z. Shen, Fusion Eng. Des. 116, 24 (2017)
DOI URL |
[83] |
R.R. Dehoff, M.M. Kirka, W.J. Sames, H. Bilheux, A.S. Tremsin, L.E. Lowe, S.S. Babu, Mater. Sci. Technol. 31, 931 (2015)
DOI URL |
[84] | S.P. Narra, R. Cunningham, J. Beuth, A.D. Rollett, Addit. Manuf. 19, 160 (2018) |
[85] |
T.T. Roehling, S.S.Q. Wu, S.A. Khairallah, J.D. Roehling, S.S. Soezeri, M.F. Crumb, M.J. Matthews, Acta Mater. 128, 197 (2017)
DOI URL |
[86] |
D.S. Shim, G.Y. Baek, J.S. Seo, G.Y. Shin, K.P. Kim, K.Y. Lee, Opt. Laser Technol. 86, 69 (2016)
DOI URL |
[87] | F. Mazzucato, S. Tusacciu, M. Lai, S. Biamino, M. Lombardi, A. Valente, Technologies 5, 29 (2017) |
[88] | S.B. Gibson I, Rosen D, Directed Energy Deposition Processes., in Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. ed. by I. Gibson, D. Rosen, B. Strucker (Springer-Verlag New York, 2015), pp. 245-268 |
[89] | W.E. Frazier, J. Mater. Eng. Perform. 23, 1917 (2014) |
[90] |
T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui, Compos. Part B Eng. 143, 172 (2018)
DOI URL |
[91] | C. Selcuk, Powder Met. 54, 94 (2011) |
[92] |
X. Wang, M. Jiang, Z. Zhou, J. Gou, D. Hui, Compos. Part B Eng. 110, 442 (2017)
DOI URL |
[93] |
M. Ma, Z. Wang, X. Zeng, Mater. Charact. 106, 420 (2015)
DOI URL |
[94] |
S.H. Riza, S.H. Masood, C. Wen, D. Ruan, S. Xu, Mater. Des. 64, 650 (2014)
DOI URL |
[95] | S.R. Bhavar. V. Kattire, P. Patil, S. Khot, K. Gujar, in, 4th International conference and exhibition on additive manufacturing technologies (2014) |
[96] |
S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Acta Mater. 108, 36 (2016)
DOI URL |
[97] | T.M. Mower, M.J. Long, Mater. Sci. Eng. A 651, 198 (2016) |
[98] | A. Saboori, S. Biamino, S. Tusacciu, E. Reggio, M. Busatto, M. Lai, P. Fino, M. Lombardi, in, Euro PM2017 Congress and Exhibition (2017), pp. 1-5 |
[99] | A. Saboori, G. Piscopo, M. Lai, A. Salmi, S. Biamino, Mater. Sci. Eng. A 780, 139179 (2020) |
[100] |
M. Aristizabal, P. Jamshidi, A. Saboori, S.C. Cox, M.M. Attallah, Mater. Lett. 259, 126897 (2020)
DOI URL |
[101] |
B. Jiang, L. Zhenglong, C. Xi, L. Peng, L. Nannan, C. Yanbin, Ceram. Int. 45, 5680 (2019)
DOI |
[102] | J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, Nature 549, 365 (2017) |
[103] |
X.P. Li, G. Ji, Z. Chen, A. Addad, Y. Wu, H.W. Wang, J. Vleugels, J. Van Humbeeck, J.P. Kruth, Acta Mater. 129, 183 (2017)
DOI URL |
[104] |
A. Saboori, M. Pavese, C. Badini, P. Fino, Front. Mater. Sci. 11, 171 (2017)
DOI URL |
[105] | A. Saboori, X. Chen, C. Badini, P. Fino, M. Pavese, Trans. Nonferrous Met. Soc. China 29, 657 (2019) |
[106] |
J.M. Torralba, C.E. da Costa, F. Velasco, J. Mater. Process. Technol. 133, 203 (2003)
DOI URL |
[107] |
B. Chen, X. Xi, C. Tan, X. Song, Curr. Opin. Chem. Eng. 28, 28 (2020)
DOI URL |
[108] |
J. Wu, X.Q. Wang, W. Wang, M.M. Attallah, M.H. Loretto, Acta Mater. 117, 311 (2016)
DOI URL |
[109] |
D. Gu, Y. Yang, L. Xi, J. Yang, M. Xia, Opt. Laser Technol. 119, 105600 (2019)
DOI URL |
[110] |
K.G. Prashanth, J. Eckert, J. Alloys Compd. 707, 27 (2017)
DOI URL |
[111] | D. Gu, X. Rao, D. Dai, C. Ma, L. Xi, K. Lin, Addit. Manuf. 29, 100801 (2019) |
[112] |
Z. Lei, J. Bi, Y. Chen, X. Chen, X. Qin, Z. Tian, Powder Technol. 356, 594 (2019)
DOI URL |
[113] |
J. Jue, D. Gu, J. Compos. Mater. 51, 519 (2017)
DOI URL |
[114] | S. Lathabai, Additive Manufacturing of Aluminium-Based Alloys and Composites, in Fundamentals of Aluminium Metallurgy. ed. by R.N. Lumley (Woodhead Publishing, Sawston, 2018), pp. 47-92 |
[115] | X. Wen, Q. Wang, Q. Mu, N. Kang, S. Sui, H. Yang, X. Lin, W. Huang, Mater. Sci. Eng. A 745, 319 (2019) |
[116] |
F. Rikhtegar, S.G. Shabestari, H. Saghafian, J. Alloys Compd. 723, 633 (2017)
DOI URL |
[117] | W. Zhou, M. Dong, Z. Zhou, X. Sun, K. Kikuchi, N. Nomura, A. Kawasaki, Carbon 141, 67 (2019) |
[118] | Y. Ma, G. Ji, X.P. Li, C.Y. Chen, Z.Q. Tan, A. Addad, Z.Q. Li, T.B. Sercombe, J.P. Kruth, Materialia 5, 100242 (2019) |
[119] | J.K. Tiwari, A. Mandal, N. Sathish, A.K. Agrawal, A.K. Srivastava, Addit. Manuf. 33, 101095 (2020) |
[120] |
Z. Hu, F. Chen, J. Xu, Q. Nian, D. Lin, C. Chen, X. Zhu, Y. Chen, M. Zhang, J. Alloys Compd. 746, 269 (2018)
DOI URL |
[121] | P. Bai, Y. Jin, Z. Zhao, L. Li, M. Liang, H. Liao, W. Zhao, Y. Hu, W. Du, Mater. Res. Express 6, 1065cl (2019) |
[122] |
J.C. Li, X. Lin, N. Kang, J.L. Lu, Q.Z. Wang, W.D. Huang, J. Alloys Compd. 826, 154077 (2020)
DOI URL |
[123] |
C. Gao, Z. Wang, Z. Xiao, D. You, K. Wong, A.H. Akbarzadeh, J. Mater. Process. Technol. 281, 116618 (2020)
DOI URL |
[124] |
H. Tan, D. Hao, K. Al-Hamdani, F. Zhang, Z. Xu, A.T. Clare, Mater. Lett. 214, 123 (2018)
DOI URL |
[125] | X. Zhao, D. Gu, C. Ma, L. Xi, H. Zhang, Vacuum 160, 189 (2019) |
[126] |
L. Wu, Z. Zhao, P. Bai, W. Zhao, Y. Li, M. Liang, H. Liao, P. Huo, J. Li, Appl. Surf. Sci. 503, 144156 (2020)
DOI URL |
[127] |
C. Gao, Z. Liu, Z. Xiao, W. Zhang, K. Wong, A.H. Akbarzadeh, J. Alloys Compd. 853, 156722 (2020)
DOI URL |
[128] |
F. Chang, D. Gu, D. Dai, P. Yuan, Surf. Coat. Technol. 272, 15 (2015)
DOI URL |
[129] |
P. Wang, C. Gammer, F. Brenne, T. Niendorf, J. Eckert, S. Scudino, Compos. Part B Eng. 147, 162 (2018)
DOI URL |
[130] |
A. Saboori, S. Biamino, M. Lombardi, S. Tusacciu, M. Busatto, M. Lai, P. Fino, Powder Metall. 62, 213 (2019)
DOI URL |
[131] | L. Yan, X. Chen, W. Li, J. Newkirk, F. Liou, J. Newkirk, F. Liou, J. Alloy. Compd. 22, 810 (2016) |
[132] |
I.V. Okulov, A.S. Volegov, H. Attar, M. Bönisch, S. Ehtemam-Haghighi, M. Calin, J. Eckert, J. Mech. Behav. Biomed. Mater. 65, 866 (2017)
DOI PMID |
[133] | K. Kondoh, 16-Titanium Metal matrix composites by powder metallurgy (PM) routes, in Titanium Powder Metallurgy, ed. by M. Qian and F. H. (Sam) Froes (Butterworth-Heinemann, Boston, 2015), pp. 277-297 |
[134] | Y. Liu, L.F. Chen, H.P. Tang, C.T. Liu, B. Liu, B.Y. Huang, Mater. Sci. Eng. A 418, 25 (2006) |
[135] | A. Saboori, S. Tusacciu, M. Busatto, M. Lai, S. Biamino, P. Fino, M. Lombardi, J. Vis. Exp. 2018, e56966(2018) |
[136] |
B. Baufeld, O. Van der Biest, R. Gault, Mater. Des. 31, S106 (2010)
DOI URL |
[137] |
H. Attar, S. Ehtemam-Haghighi, D. Kent, M.S. Dargusch, Int. J. Mach. Tools Manuf. 133, 85 (2018)
DOI URL |
[138] |
J. Wang, L. Li, C. Tan, H. Liu, P. Lin, J. Mater. Process. Technol. 252, 524 (2018)
DOI URL |
[139] |
S. Liu, Y.C. Shin, Mater. Des. 136, 185 (2017)
DOI URL |
[140] | S. M. Artem Builuk, Marina Kazachenok, in AIP Conference Proceedings 2167, 020039 (2019) |
[141] |
L. Li, J. Wang, P. Lin, H. Liu, Ceram. Int. 43, 16638 (2017)
DOI URL |
[142] |
C.A. Terrazas, L.E. Murr, D. Bermudez, E. Arrieta, D.A. Roberson, R.B. Wicker, J. Mater. Sci. Technol. 35, 309 (2019)
DOI |
[143] |
Y. Liu, S. Li, R.D.K. Misra, K. Geng, Y. Yang, Scr. Mater. 183, 6 (2020)
DOI URL |
[144] |
P.K. Farayibi, T.E. Abioye, A. Kennedy, A.T. Clare, J. Manuf. Process. 45, 429 (2019)
DOI |
[145] |
H. Li, Z. Yang, D. Cai, D. Jia, Y. Zhou, Mater. Des. 185, 108245 (2020)
DOI URL |
[146] |
H. Attar, M. Bönisch, M. Calin, L.C. Zhang, S. Scudino, J. Eckert, Acta Mater. 76, 13 (2014)
DOI URL |
[147] | B. He, K. Chang, W. Wu, C. Zhang, Vacuum 143, 23 (2017) |
[148] |
Y. Hu, W. Cong, X. Wang, Y. Li, F. Ning, H. Wang, Compos. Part B Eng. 133, 91 (2018)
DOI URL |
[149] | H. Attar, S. Ehtemam-Haghighi, D. Kent, I.V. Okulov, H. Wendrock, M. Bӧnisch, A.S. Volegov, M. Calin, J. Eckert, M.S. Dargusch, Mater. Sci. Eng. A 688, 20 (2017) |
[150] |
J. Jin, S. Zhou, Y. Zhao, Q. Zhang, X. Wang, W. Li, D. Chen, L.C. Zhang, Opt. Laser Technol. 134, 106644 (2021)
DOI URL |
[151] |
D. Gu, Y.C. Hagedorn, W. Meiners, K. Wissenbach, R. Poprawe, Surf. Coatings Technol. 205, 3285 (2011)
DOI URL |
[152] | P. Krakhmalev, I. Yadroitsev, Intermetallics 46, 147 (2014) |
[153] | G. Chen, R.Z. Liu, Y.D. Qiu, Y. Yang, J.M. Wu, S.F. Wen, J. Liu, Y.S. Shi, H.B. Tan, Mater. Today Commun. 24, 101114 (2020) |
[154] |
M. Das, V.K. Balla, D. Basu, S. Bose, A. Bandyopadhyay, Scr. Mater. 63, 438 (2010)
DOI URL |
[155] |
K. Morsi, V.V. Patel, J. Mater. Sci. 42, 2037 (2007)
DOI URL |
[156] |
Y. Horiuchi, T. Inamura, H.Y. Kim, K. Wakashima, S. Miyazaki, H. Hosoda, Mater. Trans. 48, 407 (2007)
DOI URL |
[157] |
H. Attar, M. Bönisch, M. Calin, L.C. Zhang, K. Zhuravleva, A. Funk, S. Scudino, C. Yang, J. Eckert, J. Mater. Res. 29, 1941 (2014)
DOI URL |
[158] |
M. Xia, A. Liu, Z. Hou, N. Li, Z. Chen, H. Ding, J. Alloys Compd. 728, 436 (2017)
DOI URL |
[159] |
C.L. Wu, S. Zhang, C.H. Zhang, J.B. Zhang, Y. Liu, J. Chen, Opt. Laser Technol. 115, 134 (2019)
DOI |
[160] |
B. AlMangour, Y.K. Kim, D. Grzesiak, K.A. Lee, Compos. Part B Eng. 156, 51 (2019)
DOI URL |
[161] | X. Li, C.H. Zhang, S. Zhang, C.L. Wu, J.B. Zhang, H.T. Chen, A.O. Abdullah, Vacuum 165, 139 (2019) |
[162] |
D. Tanprayoon, S. Srisawadi, Y. Sato, M. Tsukamoto, T. Suga, Opt. Laser Technol. 129, 106238 (2020)
DOI URL |
[163] | G. Lian, C. Zhao, Y. Zhang, X. Huang, C. Chen, J. Jiang, Coatings 9, 498 (2019) |
[164] |
D.E. Cooper, N. Blundell, S. Maggs, G.J. Gibbons, J. Mater. Process. Technol. 213, 2191 (2013)
DOI URL |
[165] |
L. Chen, Y. Sun, L. Li, X. Ren, Corros. Sci. 169, 108606 (2020)
DOI URL |
[166] | Y. Wang, J. Shi, J. Manuf. Sci. Eng. 142, 5 (2020) |
[167] | L. Constantin, L. Fan, M. Pontoreau, F. Wang, B. Cui, J.L. Battaglia, J.F. Silvain, Y.F. Lu, Manuf. Lett. 24, 61 (2020) |
[168] | Y.C. Zhao, Y. Tang, M.C. Zhao, C. Liu, L. Liu, C.D. Gao, C. Shuai, A. Atrens, JOM 72, 1163 (2020) |
[169] |
S.J. Hollister, Nat. Mater. 4, 518 (2005)
PMID |
[1] | Muhammad Rizwan, Junxia Lu, Fei Chen, Ruxia Chai, Rafi Ullah, Yuefei Zhang, Ze Zhang. Microstructure Evolution and Mechanical Behavior of Laser Melting Deposited TA15 Alloy at 500 °C under In-Situ Tension in SEM [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1201-1212. |
[2] | Wei Zhang, Zhi-Hong Dong, Hong-Wei Kang, Chen Yang, Yu-Jiang Xie, Mohamad Ebrahimnia, Xiao Peng. Enhancement of Strength-Ductility Balance of the Laser Melting Deposited 12CrNi2 Alloy Steel Via Multi-step Quenching Treatment [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1234-1244. |
[3] | Jinyang Liu, Jian Chen, Li Zhou, Bingyao Liu, Yang Lu, Shanghua Wu, Xin Deng, Zhongliang Lu, Zhipeng Xie, Wei Liu, Jianye Liu, Zhi Qu. Role of Co Content on Densification and Microstructure of WC-Co Cemented Carbides Prepared by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1245-1254. |
[4] | Guoliang Ma, Yong Zhao, Hongzhi Cui, Xiaojie Song, Mingliang Wang, Kwangmin Lee, Xiaohua Gao, Qiang Song, Canming Wang. Addition Al and/or Ti Induced Modifications of Microstructures, Mechanical Properties, and Corrosion Properties in CoCrFeNi High-Entropy Alloy Coatings [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1087-1102. |
[5] | Jiafen Song, Zishu Chai, Jian Zheng, Qingfeng Wu, Feng He, Zenan Yang, Junjie Li, Jincheng Wang, Haiou Yang, Zhijun Wang. Design Fe-based Eutectic Medium-Entropy Alloys Fe2NiCrNbx [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1103-1108. |
[6] | Yulun Wu, Rui Hu, Jieren Yang, Keren Zhang, Xuyang Wang. Active Eutectoid Decomposition of α → γ + τ1 and the Morphological Evolution in a Ru-Containing TiAl Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1042-1050. |
[7] | Xuan Huang, Yong Dong, Shaomu Lu, Chuanqiang Li, Zhengrong Zhang. Effects of Homogenized Treatment on Microstructure and Mechanical Properties of AlCoCrFeNi2.2 Near-Eutectic High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1079-1086. |
[8] | Y. D. Liu, J. H. Liu, W. S. Gu, H. L. Li, W. H. Li, Z. L. Pei, J. Gong, C. Sun. Oxidation, Mechanical and Tribological Behaviors of the Ni/cBN Abrasive Coating-Coated Titanium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 1007-1020. |
[9] | B. Mehdi, R. Badji, V. Ji, B. Alili, D. Bradai, W. Bedjaoui, F. Deschaux-Beaume, F. Brisset. Unveiling the Residual Stresses, Local Micromechanical Properties and Crystallographic Texture in a Ti-6Al-4V Weld Joint [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 997-1006. |
[10] | Zhitao Yu, Minghui Chen, Qunchang Wang, Xiaolan Wang, Fuhui Wang. Effect of Interfacial Microstructure on Mechanical and Tribological Properties of Cu/WS2 Self-lubricating Composites Sintered by Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 913-924. |
[11] | Chuanfeng Wu, Junmei Chen, Zhiyuan Yu, Hao Lu, Chun Yu, Jijin Xu. Ductility Anisotropy Induced by Ferrite in Direct Laser Deposited 17-4 PH Steel: Combined Microstructure and Dislocation Density Simulation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 765-776. |
[12] | Ling-Yang Yuan, Pan-Wen Han, Ghulam Asghar, Bao-Liang Liu, Jin-Ping Li, Bin Hu, Peng-Huai Fu, Li-Ming Peng. Development of High Strength and Toughness Non-Heated Al-Mg-Si Alloys for High-Pressure Die-Casting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 845-860. |
[13] | Guang-Lei Wang, Jin-Lai Liu, Ji-De Liu, Yi-Zhou Zhou, Xu-Dong Sun, Hai-Feng Zhang, Xiao-Feng Sun. Effect of Orientation on Stress-Rupture Property and Related Deformation Microstructure of a Ni-Base Re-containing Single-Crystal Superalloy at 900 °C [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 719-728. |
[14] | Dong Wu, Shitong Wei, Shanping Lu. A Study of Microstructure and Mechanical Properties for the Autogenous Single-Pass Butt Weldment of a Ferritic/Martensitic Steel Using Gas Tungsten Arc Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 628-638. |
[15] | Chenliang Chu, Weiping Chen, Zhen Chen, Zhenfei Jiang, Hao Wang, Zhiqiang Fu. Microstructure and Mechanical Behavior of FeNiCoCr and FeNiCoCrMn High-Entropy Alloys Fabricated by Powder Metallurgy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 445-454. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||