Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (7): 997-1006.DOI: 10.1007/s40195-020-01183-0
Previous Articles Next Articles
					
													B. Mehdi1( ), R. Badji2, V. Ji3, B. Alili1, D. Bradai1, W. Bedjaoui2, F. Deschaux-Beaume4, F. Brisset3
), R. Badji2, V. Ji3, B. Alili1, D. Bradai1, W. Bedjaoui2, F. Deschaux-Beaume4, F. Brisset3
												  
						
						
						
					
				
Received:2020-07-19
															
							
																	Revised:2020-09-13
															
							
																	Accepted:2020-10-12
															
							
																	Online:2021-01-29
															
							
																	Published:2021-01-29
															
						Contact:
								B. Mehdi   
													About author:B. Mehdi, m_mehdi76@yahoo.frB. Mehdi, R. Badji, V. Ji, B. Alili, D. Bradai, W. Bedjaoui, F. Deschaux-Beaume, F. Brisset. Unveiling the Residual Stresses, Local Micromechanical Properties and Crystallographic Texture in a Ti-6Al-4V Weld Joint[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 997-1006.
Add to citation manager EndNote|Ris|BibTeX
| Element | Al | Ti | V | Fe | 
|---|---|---|---|---|
| (wt%) | 5.65 | 90.25 | 3.85 | 0.25 | 
| (at.%) | 14.84 | 81.82 | 3.08 | 0.26 | 
Table 1 Chemical composition of the studied Ti-6Al-4 V alloy
| Element | Al | Ti | V | Fe | 
|---|---|---|---|---|
| (wt%) | 5.65 | 90.25 | 3.85 | 0.25 | 
| (at.%) | 14.84 | 81.82 | 3.08 | 0.26 | 
| Element | Al | Ti | V | Fe | 
|---|---|---|---|---|
| (wt%) | 5.65 | 90.25 | 3.85 | 0.25 | 
| (at.%) | 14.84 | 81.82 | 3.08 | 0.26 | 
Table 2 Used welding parameters
| Element | Al | Ti | V | Fe | 
|---|---|---|---|---|
| (wt%) | 5.65 | 90.25 | 3.85 | 0.25 | 
| (at.%) | 14.84 | 81.82 | 3.08 | 0.26 | 
| Parameters | Values | 
|---|---|
| Ψ angles: 28° (by step of 5°) | - 70 to + 70° | 
| Atomic plane for deformation $\varepsilon_{\phi \psi }$ measurements | (2 1-3 3) | 
| Diffraction angle for the associate peak | 2θ = 142° | 
| Elastic constants of the studied material | Young modulus: E = 120 GPa Poisson coefficient: ν = 0.33 | 
| Anisotropic factor ARX | 1 | 
| Stress analysis precision | ± 10 MPa | 
Table 3 Residual stress measurement parameters
| Parameters | Values | 
|---|---|
| Ψ angles: 28° (by step of 5°) | - 70 to + 70° | 
| Atomic plane for deformation $\varepsilon_{\phi \psi }$ measurements | (2 1-3 3) | 
| Diffraction angle for the associate peak | 2θ = 142° | 
| Elastic constants of the studied material | Young modulus: E = 120 GPa Poisson coefficient: ν = 0.33 | 
| Anisotropic factor ARX | 1 | 
| Stress analysis precision | ± 10 MPa | 
| Weld zones | Young’s modulus, Eβ (GPa) | Microhardness, Hβ (MPa) | Young’s modulus, Eα (GPa) | Microhardness, Hα (MPa) | 
|---|---|---|---|---|
| BM | 100 ± 0.9 | 3500 ± 110 | 125 ± 0.9 | 4840 ± 110 | 
| HAZ | 104 ± 1.2 | 3000 ± 90 | 140 ± 1.2 | 5080 ± 90 | 
| FZ | 108 ± 1.6 | 3600 ± 120 | 135 ± 1.6 | 4952 ± 120 | 
Table 4 Micromechanical properties in the different regions of the investigated Ti-6Al-4 V weld joint obtained from nanoindentation measurements
| Weld zones | Young’s modulus, Eβ (GPa) | Microhardness, Hβ (MPa) | Young’s modulus, Eα (GPa) | Microhardness, Hα (MPa) | 
|---|---|---|---|---|
| BM | 100 ± 0.9 | 3500 ± 110 | 125 ± 0.9 | 4840 ± 110 | 
| HAZ | 104 ± 1.2 | 3000 ± 90 | 140 ± 1.2 | 5080 ± 90 | 
| FZ | 108 ± 1.6 | 3600 ± 120 | 135 ± 1.6 | 4952 ± 120 | 
 
																													Fig. 8 a Tensile curves obtained during interrupted tensile tests, b mean residual stress evolution in the different weld zones after interrupted tensile tests
 
																													Fig. 9 a Macrographs of the welded sheet illustrated in different regions, b inverse pole figure (IPF) maps obtained for the BM, c IPF maps obtained for the BM/HAZ, d IPF maps obtained for the HAZ, e IPF maps obtained for the FZ
| [1] | J. Lin, N. Ma, X. Liu, Y. Lei , J. Mater. Process. Technol. 278, 116504(2020) DOI URL | 
| [2] | S. Cui, Y. Shi, T. Zhu, W. Lei , J. Manuf. Proc. 37, 418(2019) DOI URL | 
| [3] | T. Sun, Y. Liu, S.J. Li, J.P. Li , Acta Metall. Sin. -Engl. Lett. 32, 869(2019) | 
| [4] | A.B. Short , Mater. Sci. Technol. 25, 309(2009) DOI URL | 
| [5] | Z.B. Wang, H.X. Hu, C.B. Liu, H.N. Chen, Y.G. Zheng , Acta Metall. Sin. -Engl. Lett. 28, 477(2015) | 
| [6] | M.R. Bache , Int. J. Fatigue 25, 1079 (2003) | 
| [7] | X.L. Gao, L.J. Zhang, J. Liu, Z.J.X. Zhang, Mater. Sci. Eng. A 559, 14 (2013) | 
| [8] | M. Junaid, M.N. Baig, M. Shamir, F.N. Khan, K. Rehman, J. Haide , J. Mater. Process. Technol. 242, 24(2017) DOI URL | 
| [9] | M. Junaid, F.N. Khan, N. Bakhsh, M.N. Baig, K. Rahman , Mater. Des. 139, 198(2018) DOI URL | 
| [10] | T.S. Balasubramanian, V. Balasubramanian, M.A. Muthumanickam , Mater. Des. 32, 4509(2011) DOI URL | 
| [11] | J. Cai, F. Li, T. Liu, B. Chen , Mater. Charact. 62, 287(2011) DOI URL | 
| [12] | J. Dong, F. Li, C. Wang , Mater. Sci. Eng. A 580, 105 (2013) | 
| [13] | E.A. Trofimov, R.Y. Lutfullin, R.M. Kashaev , Lett. Mater. 5, 67(2015) | 
| [14] | K.L. Leary, E. Merson, K. Birmingham, D. Harvey, R. Brydson , Mater. Sci. Eng. A 527, 7694 (2010) | 
| [15] | C. Wu, H. Yang, H. Li , Acta Metall. Sin. -Engl. Lett. 26, 5(2013) | 
| [16] | A.A. Antonysamy, J. Meyer, P.B. Prangnell , Mater. Charact. 84, 153(2013) DOI URL | 
| [17] | A. Fall, H. Monajati, A. Khodabandeh, M.H. Fesharaki, H. Champliaud, M. Jahazi , Mat. Sci. Eng. A 749, 166 (2019) | 
| [18] | K. Tirsatine, H. Azzeddine, Y. Huang, T. Baudin, A. Helbert, F. Brisset, D. Bradai, T.G. Langdon , J. Alloy. Compd. 753, 46(2018) DOI URL | 
| [19] | European, standard. NF EN 15305, April(2009) | 
| [20] | B. Mehdi, R. Badji, V. Ji, B. Allili, D. Bradai, F. Deschaux-Beaume, F. Soulié , J. Mater. Process. Technol. 231, 441(2016) DOI URL | 
| [21] | ASTM.E8/E8M-16a Standard test methods for tension testing of metallic materials, ASTM International (2016) | 
| [22] | K. Kamlesh, M. Manoj, K.S. Santosh , J. Mat. Proc. Techol. 265, 34(2019) | 
| [23] | N. Kherrouba, D. Carron, M. Bouabdallah, R. Badji , J. Mater. Eng. Perform. 28, 6921(2019) DOI | 
| [24] | Y.T. Lee, G. Welsch , Mat. Sci. Eng. A 128, 77 (1990) | 
| [25] | C. Leyens , Hoboken, 2003) | 
| [26] | L.C. Zhang, L.Y. Chen , Adv. Eng. Mater. 21, 1(2019) | 
| [27] | H.J.Y.J. Lee, K.O. Lee , Acta Metall. Sin. -Engl. Lett. 28, 684(2015) | 
| [28] | L. Peng, F. Aihan, Y. Shijian, L. Geping, S. Jun , Mat. Sci. Eng. A. 563, 16(2013) DOI URL | 
| [29] | N. Gey, M. Humbert , Acta Mater. 50, 277(2002) DOI URL | 
| [30] | K. Bikash, B. Swarup , Opt. Lasers Eng. 122, 209(2019) DOI URL | 
| [31] | G.Q. Wang, Z.B. Zhao, B.B. Yu, J.R. Liu, Q.J. Wang, J.H. Zhang, R. Yang, J.W. Li , Acta Metall. Sin. -Engl. Lett. 30, 499(2017) | 
| [32] | K. Topolski, T. Brynk, H. Garbacz , Arch. Civ. Mech. Eng. 16, 927(2016) DOI URL | 
| [33] | M. Hiroaki, C. Akihiko, H. Shuji , Mat. Sci. Eng. A 486, 503 (2008) | 
| [34] | N.S. Biradar, R. Raman , J. Mater. Eng. Perform. 21, 2495(2012) DOI URL | 
| [35] | M.R. Bache, W.J. Evans , Mat. Sci. Eng. A 319, 409 (2001) | 
| [36] | E. Maawad, W. Gan, M. Hofmann, V. Ventzke, S. Riekehr, H.G. Brokmeiera, N. Kashaeva, M. Müller , Mater. Des. 101, 137(2016) DOI URL | 
| [37] | Y.M. Cui, C.H. Li, C.S. Zhang, R.G. Li, Y. Ren, W.W. Zheng, Y.D. Wang , Mater. Sci. Eng. A 772, 138806 (2020) | 
| [1] | Meng Yan, Cong Wang, Tianjiao Luo, Yingju Li, Xiaohui Feng, Qiuyan Huang, Yuansheng Yang. Effect of Pulsed Magnetic Field on the Residual Stress of Rolled Magnium Alloy AZ31 Sheet [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 45-53. | 
| [2] | Siqi Xiang, Xinfang Zhang. Residual Stress Removal Under Pulsed Electric Current [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 281-289. | 
| [3] | Wen-Chao Dong, Dian-Bao Gao, Shan-Ping Lu. Numerical Investigation on Residual Stresses of the Safe-End/Nozzle Dissimilar Metal Welded Joint in CAP1400 Nuclear Power Plants [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(5): 618-628. | 
| [4] | Huseyin Zengin, Yunus Turen, Muhammet Emre Turan, Fatih Ayd?n. Evolution of Microstructure, Residual Stress, and Tensile Properties of Mg-Zn-Y-La-Zr Magnesium Alloy Processed by Extrusion [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(11): 1309-1319. | 
| [5] | Lin Jiang, Liang Zhang, Zhi-Quan Liu. Optimal Design of Co/In/Cu Sputtering Target Assembly Using Finite Element Method and Taguchi Method [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(11): 1407-1414. | 
| [6] | Zhong-Yuan Feng, Xin-Jie Di, Shi-Pin Wu, Dong-Po Wang, Xiao-Qian Liu. Comparison of Microstructure and Residual Stress Between TIG and MAG Welding Using Low Transformation Temperature Welding Filler [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(3): 263-272. | 
| [7] | Ye-Jun Zhu, Wen-Feng Ding, Ze-Yu Zhao, Yu-Can Fu, Hong-Hua Su. Compressive Strength and Interface Microstructure of PCBN Grains Brazed with High-Frequency Induction Heating Method [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(7): 641-649. | 
| [8] | Z.G. Liu, T.I. Wong, W. Huang, N. Sridhar, S.J. Wang. Effect of Surface Polishing Treatment on the Fatigue Performance of Shot-Peened Ti-6Al-4V Alloy [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(7): 630-640. | 
| [9] | Wenbo Zhao, T.Warren Liao, Lampros Kompotiatis. Stress and Springback Analyses of API X70 Pipeline Steel Under 3-Roller Bending via Finite Element Method [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(5): 470-482. | 
| [10] | Sheng-Sheng Zhao,Yan-Hui Zhao,Lv-Sha Cheng,Vladimir Viktorovich Denisov,Nikolay Nikolaevich Koval,Bao-Hai Yu,Hai-Juan Mei. Effects of Substrate Pulse Bias Duty Cycle on the Microstructure and Mechanical Properties of Ti-Cu-N Films Deposited by Magnetic Field-Enhanced Arc Ion Plating [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(2): 176-184. | 
| [11] | Neng-Yong Ye, Ming Cheng, Shi-Hong Zhang. Effect of Cold Rolling Parameters on the Longitudinal Residual Stress Distribution of GH4169 Alloy Sheet [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(12): 1510-1517. | 
| [12] | Zuoyan Ye, Daoxin Liu, Chongyang Li, Xiaoming Zhang, Zhi Yang, Mingxia Lei. Effect of Shot Peening and Plasma Electrolytic Oxidation on the Intergranular Corrosion Behavior of 7A85 Aluminum Alloy [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(4): 705-713. | 
| [13] | Nan LI, Zhinan AN, Wenjun LIU, Yandong WANG. Quantification of Compositional and Residual Stress Effects on Lattice Strain in Dual-phase Stainless Steels by Means of Differential Aperture X-ray Micro-diffraction [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(6): 663-668. | 
| [14] | Dean DENG, Yangang TONG, Ninshu MA, Hidekazu MURAKAWA. Prediction of the Residual Welding Stress in 2.25Cr-1Mo Steel by Taking into Account the Effect of the Solid-State Phase Transformations [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(3): 333-339. | 
| [15] | Guoxiang XU, Chuansong WU, Xuezhou MA, Xuyou WANG. Numerical Analysis of Welding Residual Stress and Distortion in Laser+GMAW Hybrid Welding of Aluminum Alloy T-Joint [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(3): 352-360. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
 WeChat
			   WeChat
			