Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (6): 845-860.DOI: 10.1007/s40195-020-01174-1
Previous Articles Next Articles
Ling-Yang Yuan1, Pan-Wen Han1, Ghulam Asghar1, Bao-Liang Liu2, Jin-Ping Li3, Bin Hu3, Peng-Huai Fu1,2, Li-Ming Peng1,2()
Received:
2020-07-03
Revised:
2020-08-27
Accepted:
2020-09-07
Online:
2021-06-10
Published:
2021-05-31
Contact:
Li-Ming Peng
About author:
Li-Ming Peng. plm616@sjtu.edu.cnLing-Yang Yuan, Pan-Wen Han, Ghulam Asghar, Bao-Liang Liu, Jin-Ping Li, Bin Hu, Peng-Huai Fu, Li-Ming Peng. Development of High Strength and Toughness Non-Heated Al-Mg-Si Alloys for High-Pressure Die-Casting[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 845-860.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Vertical section of Al-5.5 Mg-Si-0.6Mn-0.15Ti (wt%) equilibrium phases diagram with Si content in the range of 0.5-3.0 wt% calculated with Pandat software
Fig. 2 a Solidification process of the Al-Mg-Si alloy; and b-d solidification range (?T), content of Mg dissolved into the matrix (M) and the proportion of eutectic compounds (E) for b Al-5.5 Mg (0.5-3.0)Si, c Al-6.5 Mg-(0.5-3.76)Si, and d Al-7.5 Mg-(0.5-4.3)Si alloys
Symbol | A | B | C | D | Tensile properties |
---|---|---|---|---|---|
Mg (wt%) | Si (wt%) | Ti (wt%) | e | ||
1# | 1 (6.5) | 1 (2.0) | 1 (0.0) | 1 | |
2# | 1 (6.5) | 2 (2.5) | 2 (0.1) | 2 | |
3# | 1 (6.5) | 3 (3.0) | 3 (0.2) | 3 | |
4# | 2 (7.0) | 1 (2.0) | 2 (0.1) | 3 | |
5# | 2 (7.0) | 2 (2.5) | 3 (0.2) | 1 | |
6# | 2 (7.0) | 3 (3.0) | 1 (0.0) | 2 | |
7# | 3 (7.5) | 1 (2.0) | 3 (0.2) | 2 | |
8# | 3 (7.5) | 2 (2.5) | 1 (0.0) | 3 | |
9# | 3 (7.5) | 3 (3.0) | 2 (0.1) | 1 |
Table 1 3 factors and 3 levels orthogonal design of HPDC Al-xMg-ySi-zTi alloys
Symbol | A | B | C | D | Tensile properties |
---|---|---|---|---|---|
Mg (wt%) | Si (wt%) | Ti (wt%) | e | ||
1# | 1 (6.5) | 1 (2.0) | 1 (0.0) | 1 | |
2# | 1 (6.5) | 2 (2.5) | 2 (0.1) | 2 | |
3# | 1 (6.5) | 3 (3.0) | 3 (0.2) | 3 | |
4# | 2 (7.0) | 1 (2.0) | 2 (0.1) | 3 | |
5# | 2 (7.0) | 2 (2.5) | 3 (0.2) | 1 | |
6# | 2 (7.0) | 3 (3.0) | 1 (0.0) | 2 | |
7# | 3 (7.5) | 1 (2.0) | 3 (0.2) | 2 | |
8# | 3 (7.5) | 2 (2.5) | 1 (0.0) | 3 | |
9# | 3 (7.5) | 3 (3.0) | 2 (0.1) | 1 |
Symbol | Mg | Si | Ti | Mn | Fe | Other | Al |
---|---|---|---|---|---|---|---|
1# | 6.41 | 2.10 | 0.01 | 0.68 | 0.12 | < 0.3 | Bal. |
2# | 6.43 | 2.57 | 0.09 | 0.67 | 0.13 | < 0.3 | Bal. |
3# | 6.46 | 3.10 | 0.17 | 0.65 | 0.11 | < 0.3 | Bal. |
4# | 7.02 | 2.09 | 0.12 | 0.71 | 0.13 | < 0.3 | Bal. |
5# | 7.10 | 2.58 | 0.18 | 0.66 | 0.11 | < 0.3 | Bal. |
6# | 7.06 | 3.11 | 0.01 | 0.71 | 0.13 | < 0.3 | Bal. |
7# | 7.54 | 1.95 | 0.17 | 0.69 | 0.11 | < 0.3 | Bal. |
8# | 7.51 | 2.53 | 0.01 | 0.68 | 0.12 | < 0.3 | Bal. |
9# | 7.49 | 3.08 | 0.11 | 0.72 | 0.12 | < 0.3 | Bal. |
Table 2 Actual chemical compositions of HPDC Al-xMg-ySi-zTi alloys (wt%)
Symbol | Mg | Si | Ti | Mn | Fe | Other | Al |
---|---|---|---|---|---|---|---|
1# | 6.41 | 2.10 | 0.01 | 0.68 | 0.12 | < 0.3 | Bal. |
2# | 6.43 | 2.57 | 0.09 | 0.67 | 0.13 | < 0.3 | Bal. |
3# | 6.46 | 3.10 | 0.17 | 0.65 | 0.11 | < 0.3 | Bal. |
4# | 7.02 | 2.09 | 0.12 | 0.71 | 0.13 | < 0.3 | Bal. |
5# | 7.10 | 2.58 | 0.18 | 0.66 | 0.11 | < 0.3 | Bal. |
6# | 7.06 | 3.11 | 0.01 | 0.71 | 0.13 | < 0.3 | Bal. |
7# | 7.54 | 1.95 | 0.17 | 0.69 | 0.11 | < 0.3 | Bal. |
8# | 7.51 | 2.53 | 0.01 | 0.68 | 0.12 | < 0.3 | Bal. |
9# | 7.49 | 3.08 | 0.11 | 0.72 | 0.12 | < 0.3 | Bal. |
Symbol | A | B | C | D | Results | ||
---|---|---|---|---|---|---|---|
Mg (wt%) | Si (wt%) | Ti (wt%) | e | EL. (%) | YS (MPa) | UTS (MPa) | |
1# | 1 (6.5) | 1 (2.0) | 1 (0) | 1 | 7.5 | 197 | 354 |
2# | 1 | 2 (2.5) | 2 (0.1) | 2 | 11.4 | 205 | 398 |
3# | 1 | 3 (3.0) | 3 (0.2) | 3 | 13.6 | 203 | 360 |
4# | 2 (7.0) | 1 | 2 | 3 | 7.0 | 207 | 368 |
5# | 2 | 2 | 3 | 1 | 9.6 | 212 | 398 |
6# | 2 | 3 | 1 | 2 | 11.9 | 213 | 382 |
7# | 3 (7.5) | 1 | 3 | 2 | 6.2 | 215 | 377 |
8# | 3 | 2 | 1 | 3 | 8.5 | 221 | 412 |
9# | 3 | 3 | 2 | 1 | 10.5 | 219 | 401 |
K1EL | 32.5 | 20.7 | 27.9 | 27.6 | TEL. = 86.2% | ||
K2EL | 28.5 | 29.5 | 28.9 | 29.5 | |||
K3EL | 25.2 | 36 | 29.4 | 29.1 | |||
SEL | 8.9 | 39.3 | 0.4 | 0.7 | |||
K1YS | 605 | 619 | 631 | 628 | TYS = 1892 MPa | ||
K2YS | 632 | 638 | 631 | 633 | |||
K3YS | 655 | 635 | 630 | 631 | |||
SYS | 417.6 | 69.6 | 0.2 | 4.2 | |||
K1UTS | 1112 | 1099 | 1148 | 1153 | TUTS = 3450 MPa | ||
K2UTS | 1148 | 1208 | 1167 | 1157 | |||
K3UTS | 1190 | 1143 | 1135 | 1140 | |||
SUTS | 1016 | 2004.7 | 172.7 | 52.7 |
Table 3 3 factors and 3 levels orthogonal experiment results
Symbol | A | B | C | D | Results | ||
---|---|---|---|---|---|---|---|
Mg (wt%) | Si (wt%) | Ti (wt%) | e | EL. (%) | YS (MPa) | UTS (MPa) | |
1# | 1 (6.5) | 1 (2.0) | 1 (0) | 1 | 7.5 | 197 | 354 |
2# | 1 | 2 (2.5) | 2 (0.1) | 2 | 11.4 | 205 | 398 |
3# | 1 | 3 (3.0) | 3 (0.2) | 3 | 13.6 | 203 | 360 |
4# | 2 (7.0) | 1 | 2 | 3 | 7.0 | 207 | 368 |
5# | 2 | 2 | 3 | 1 | 9.6 | 212 | 398 |
6# | 2 | 3 | 1 | 2 | 11.9 | 213 | 382 |
7# | 3 (7.5) | 1 | 3 | 2 | 6.2 | 215 | 377 |
8# | 3 | 2 | 1 | 3 | 8.5 | 221 | 412 |
9# | 3 | 3 | 2 | 1 | 10.5 | 219 | 401 |
K1EL | 32.5 | 20.7 | 27.9 | 27.6 | TEL. = 86.2% | ||
K2EL | 28.5 | 29.5 | 28.9 | 29.5 | |||
K3EL | 25.2 | 36 | 29.4 | 29.1 | |||
SEL | 8.9 | 39.3 | 0.4 | 0.7 | |||
K1YS | 605 | 619 | 631 | 628 | TYS = 1892 MPa | ||
K2YS | 632 | 638 | 631 | 633 | |||
K3YS | 655 | 635 | 630 | 631 | |||
SYS | 417.6 | 69.6 | 0.2 | 4.2 | |||
K1UTS | 1112 | 1099 | 1148 | 1153 | TUTS = 3450 MPa | ||
K2UTS | 1148 | 1208 | 1167 | 1157 | |||
K3UTS | 1190 | 1143 | 1135 | 1140 | |||
SUTS | 1016 | 2004.7 | 172.7 | 52.7 |
Factors | S | D | V (S/D) | F (Vi/Ve) | Significance | |
---|---|---|---|---|---|---|
EL | A | 8.9 | 2 | 4.45 | 12.7 | (*) |
B | 39.3 | 2 | 19.65 | 56.1 | * | |
C | 0.4 | 2 | 0.2 | 0.57 | ||
e | 0.7 | 2 | 0.35 | |||
YS | A | 417.6 | 2 | 208.8 | 99.4 | ** |
B | 69.6 | 2 | 34.8 | 16.6 | (*) | |
C | 0.2 | 2 | 0.1 | 0.05 | ||
e | 4.2 | 2 | 2.1 | |||
UTS | A | 1016 | 2 | 508 | 19.2 | * |
B | 2004.7 | 2 | 1002.5 | 37.8 | * | |
C | 172.7 | 2 | 86.5 | 3.3 | ||
e | 52.7 | 2 | 26.5 |
Table 4 Variance analysis of orthogonal test results
Factors | S | D | V (S/D) | F (Vi/Ve) | Significance | |
---|---|---|---|---|---|---|
EL | A | 8.9 | 2 | 4.45 | 12.7 | (*) |
B | 39.3 | 2 | 19.65 | 56.1 | * | |
C | 0.4 | 2 | 0.2 | 0.57 | ||
e | 0.7 | 2 | 0.35 | |||
YS | A | 417.6 | 2 | 208.8 | 99.4 | ** |
B | 69.6 | 2 | 34.8 | 16.6 | (*) | |
C | 0.2 | 2 | 0.1 | 0.05 | ||
e | 4.2 | 2 | 2.1 | |||
UTS | A | 1016 | 2 | 508 | 19.2 | * |
B | 2004.7 | 2 | 1002.5 | 37.8 | * | |
C | 172.7 | 2 | 86.5 | 3.3 | ||
e | 52.7 | 2 | 26.5 |
Fig. 6 Property comparison of HPDC Al-xMg-ySi-zTi alloys with some known non-heat-treated HPDC Al alloys: field A (reported alloys); field B (Al-xMg-ySi-zTi alloys in this work)
Fig. 8 EBSD orientation map of a Al-7.0 Mg-2Si-0.15Ti (4#), c Al-7.0 Mg-2.5Si-0.2Ti (5#) and e Al-7.0 Mg-3Si-0Ti (6#) alloys; b, d, and f grain size distributions of 4#, 5#, and 6# alloys, respectively
Alloys | Size (μm) | Alloys | Size (μm) | Alloys | Size (μm) |
---|---|---|---|---|---|
1# | 32.4 ± 5.4 | 4# | 33.6 ± 4.2 | 7# | 32.2 ± 3.0 |
2# | 23.5 ± 3.2 | 5# | 24.5 ± 2.1 | 8# | 25.2 ± 3.5 |
3# | 16.1 ± 1.5 | 6# | 18.8 ± 2.3 | 9# | 17.3 ± 1.8 |
Table 5 Average grain sizes of HPDC Al-xMg-ySi-zTi alloys
Alloys | Size (μm) | Alloys | Size (μm) | Alloys | Size (μm) |
---|---|---|---|---|---|
1# | 32.4 ± 5.4 | 4# | 33.6 ± 4.2 | 7# | 32.2 ± 3.0 |
2# | 23.5 ± 3.2 | 5# | 24.5 ± 2.1 | 8# | 25.2 ± 3.5 |
3# | 16.1 ± 1.5 | 6# | 18.8 ± 2.3 | 9# | 17.3 ± 1.8 |
Alloys | Mg (wt%) | Alloys | Mg (wt%) | Alloys | Mg (wt%) |
---|---|---|---|---|---|
1# | 3.24 ± 0.14 | 4# | 3.74 ± 0.29 | 7# | 4.12 ± 0.26 |
2# | 2.44 ± 0.20 | 5# | 2.91 ± 0.17 | 8# | 3.31 ± 0.16 |
3# | 1.40 ± 0.13 | 6# | 2.11 ± 0.32 | 9# | 2.47 ± 0.30 |
Table 6 Average concentration of Mg in the matrix of HPDC Al-xMg-ySi-zTi alloys measured by SEM-EDS
Alloys | Mg (wt%) | Alloys | Mg (wt%) | Alloys | Mg (wt%) |
---|---|---|---|---|---|
1# | 3.24 ± 0.14 | 4# | 3.74 ± 0.29 | 7# | 4.12 ± 0.26 |
2# | 2.44 ± 0.20 | 5# | 2.91 ± 0.17 | 8# | 3.31 ± 0.16 |
3# | 1.40 ± 0.13 | 6# | 2.11 ± 0.32 | 9# | 2.47 ± 0.30 |
Alloys | ∆E | ∆Sm (μm) | ∆M (wt%) | ∆EL. (%) | ∆YS (MPa) | ∆UTS (MPa) |
---|---|---|---|---|---|---|
1# | 0 | 0 | 0 | 0 | 0 | 0 |
2# | 0.18 | -8.9 | -0.80 | 3.9 | 8 | 42 |
3# | 0.52 | -16.3 | -1.84 | 6.1 | 6 | 6 |
4# | 0.04 | 1.2 | 0.50 | -0.5 | 10 | 12 |
5# | 0.23 | -7.9 | -0.33 | 2.1 | 15 | 42 |
6# | 0.49 | -13.6 | -1.13 | 4.4 | 16 | 28 |
7# | 0.03 | -0.2 | 0.88 | -1.3 | 18 | 23 |
8# | 0.30 | -7.2 | 0.07 | 1 | 22 | 55 |
9# | 0.57 | -15.1 | -0.77 | 3 | 24 | 45 |
Table 7 Variations of the microstructures and properties of HPDC Al-xMg-ySi-zTi alloys in comparison with 1# alloy
Alloys | ∆E | ∆Sm (μm) | ∆M (wt%) | ∆EL. (%) | ∆YS (MPa) | ∆UTS (MPa) |
---|---|---|---|---|---|---|
1# | 0 | 0 | 0 | 0 | 0 | 0 |
2# | 0.18 | -8.9 | -0.80 | 3.9 | 8 | 42 |
3# | 0.52 | -16.3 | -1.84 | 6.1 | 6 | 6 |
4# | 0.04 | 1.2 | 0.50 | -0.5 | 10 | 12 |
5# | 0.23 | -7.9 | -0.33 | 2.1 | 15 | 42 |
6# | 0.49 | -13.6 | -1.13 | 4.4 | 16 | 28 |
7# | 0.03 | -0.2 | 0.88 | -1.3 | 18 | 23 |
8# | 0.30 | -7.2 | 0.07 | 1 | 22 | 55 |
9# | 0.57 | -15.1 | -0.77 | 3 | 24 | 45 |
Properties/F | ∆E | ∆Sm | ∆M | ∆M2 | ∆E*∆Sm*∆M |
---|---|---|---|---|---|
∆EL | 2.71 | 4.12 | 20.32 | - | - |
∆YS | 1.22 | 23.00 | 137.23 | - | - |
∆UTS | 15.20 | 4.49 | - | 15.84 | 52.98 |
Table 8 F values for ?E, ?Sm, and ?M on the Eqs. (7-9)
Properties/F | ∆E | ∆Sm | ∆M | ∆M2 | ∆E*∆Sm*∆M |
---|---|---|---|---|---|
∆EL | 2.71 | 4.12 | 20.32 | - | - |
∆YS | 1.22 | 23.00 | 137.23 | - | - |
∆UTS | 15.20 | 4.49 | - | 15.84 | 52.98 |
Fig. 11 SEM images showing microstructures near the fracture surface of the HPDC Al-xMg-ySi-zTi alloys specimens: a near the fracture surface; b Fe-cracks; c E-M-cracks; d E-cracks
Fig. 13 Contour maps of EL., YS, UTS versus the contents of Mg, Si, and the microstructure: a Mg and Si-EL.; b average grain size (Sm) and Mg content in the matrix (M)-EL.; c Mg and Si-YS; d average grain size (Sm) and Mg content in the matrix (M)-YS; e Mg and Si-UTS; f average grain size (Sm), Mg content in the matrix (M) and eutectic phase content (E)-UTS
[1] |
A.I. Taub, A.A. Luo, Advanced lightweight materials and manufacturing processes for automotive applications. MRS Bull. 40, 1045 (2015)
DOI URL |
[2] |
G.S. Cole, A.M. Sherman, Light weight materials for automotive applications. Mater. Charact. 35, 3 (1995)
DOI URL |
[3] | A. Morita, Aluminum alloys for automobile applications, Proceedings of the 6th International Conference on Aluminum Alloys (Proc. 6th ICAA) 1, 25 (1998) |
[4] | W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P.D. Smet, A. Haszler, A. Vieregge, Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng. A 280, 37 (2000) |
[5] | J.T. Staley, D.J. Lege, Advances in aluminium alloy products for structural applications in transportation. Le J. de Phys. IV. 3, 179 (1993) |
[6] | S. Ji, Light-Weighted Materials for Automotive Industry. BCAST Internal Report (Brunel University, UK, 2011). |
[7] | G. Davies, Materials for Automobile Bodies, 2nd edn. (Butterworth-Heinemann, Oxford, 2012). |
[8] | J.G. Kaufman, E. Rooy, Aluminum Alloy Castings: Properties, Processes,Applications, 1st edn. (ASM International, US, 2004). |
[9] |
X. Dong, H. Yang, X. Zhu, S. Ji, High strength and ductility aluminium alloy processed by high pressure die casting. J. Alloy Compd. 773, 86 (2019)
DOI URL |
[10] | S. Ji, F. Yan, Z. Fan, Development of a high strength Al-Mg2Si-Mg-Zn based alloy for high pressure die casting. Mater. Sci. Eng. A 626, 165 (2015) |
[11] |
F. Yan, W. Yang, S. Ji, Z. Fan, Effect of solutionising and ageing on the microstructure and mechanical properties of a high strength die-cast Al-Mg-Zn-Si alloy. Mater. Chem. Phys. 167, 88 (2015)
DOI URL |
[12] | V.S. Zolotorevsky, N.A. Belov, M.V. Glazoff, Casting Aluminum Alloys, 1st edn. (Elsevier, Oxford, 2007). |
[13] | F. Bonollo, N. Gramegna, G. Timelli, High-pressure die-casting: Contradictions and challenges. JOM 67, 901 (2015) |
[14] | F. Casarotto, A.J. Franke, R. Franke, Advanced Materials in Automotive Engineering, 1st edn. (Woodhead, Cambridge,2012). |
[15] |
S. Ji, H. Yang, X. Cui, Z. Fan, Macro-heterogeneities in microstructures, concentrations, defects and tensile properties of die cast Al-Mg-Si alloys. Mater. Sci. Technol. 33, 2223 (2017)
DOI URL |
[16] | P. Zhang, Z. Li, B. Liu, W. Ding, L. Peng, Improved tensile properties of a new aluminum alloy for high pressure die casting. Mater. Sci. Eng. A 651, 376 (2016) |
[17] |
Z. Hu, L. Wan, S. Wu, H. Wu, X. Liu, Microstructure and mechanical properties of high strength die-casting Al-Mg-Si-Mn alloy. Mater. Des. 46, 451 (2013)
DOI URL |
[18] | S. Ji, D. Watson, Z. Fan, M. White, Development of a super ductile diecast Al-Mg-Si alloy. Mater. Sci. Eng. A 556, 824 (2012) |
[19] | H. Koch, B. Lenczowski, Al/Mg/Si Cast Aluminium Containing Scandium. E. U. Patent 2005/047554, 26 May 2005 |
[20] | G. Trenda, A. Kraly, Aluminum alloy. US Patent 8,337,644,25 Dec 2012 |
[21] |
H. Yang, D. Watson, Y. Wang, S. Ji, Effect of nickel on the microstructure and mechanical property of die-cast Al-Mg-Si-Mn alloy. J. Mater. Sci. 49, 8412 (2014)
DOI URL |
[22] | S. Ji, W. Yang, F. Gao, D. Watson, Z. Fan, Effect of iron on the microstructure and mechanical property of Al-Mg-Si-Mn and Al-Mg-Si diecast alloys. Mater. Sci. Eng. A 564, 130 (2013) |
[23] | U. Hielscher, H. Sternau, H. Koch, R. Klos, New developed pressure die casting alloy with excellent mechanical properties in the as-cast condition. Giesserei 85, 62 (1998) |
[24] | U. Hielscher, H. Sternau, H. Koch, A. Franke, Magsimal-59, an AlMgMnSi-type squeeze-casting alloy designed for temper F. Paper presented at the 125th annual meeting and exhibition of the Minerals, Metals and Materials Society, California, US, 4-8th February 1996 |
[25] | S. Otarawanna, C.M. Gourlay, H.I. Laukli, A.K. Dahle, Microstructure formation in AlSi4MgMn and AlMg5Si2Mn high-pressure die castings. Metall. Mater. Trans. A 40, 1645 (2009) |
[26] | S. Ji, Y. Wang, D. Watson, Z. Fan, Microstructural evolution and solidification behavior of Al-Mg-Si alloy in high-pressure die casting. Metall. Mater. Trans. A 44, 3185 (2013) |
[27] | N.A. Belov, D.G. Eskin, A.A. Aksenov, Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys. (Elsevier, Oxford, 2005) |
[28] | D.M. Stefanscu, J.R. Davis, J.D. Destefani (Eds.), ASM Metals Handbook, Casting. Vol. 15, 9th edn. (ASM International, US, 1998) |
[29] |
L. Yuan, L. Peng, J. Han, B. Liu, Y. Wu, J. Chen, Effect of Cu addition on microstructures and tensile properties of high-pressure die-casting Al-5.5 Mg-0.7 Mn alloy. J. Mater. Sci. Technol. 35, 1017 (2019)
DOI URL |
[30] |
P. Zhang, Z. Li, B. Liu, W. Ding, Tensile properties and deformation behaviors of a new aluminum alloy for high pressure die casting. J. Mater. Sci. Technol. 33, 367 (2017)
DOI URL |
[1] | Chuanfeng Wu, Junmei Chen, Zhiyuan Yu, Hao Lu, Chun Yu, Jijin Xu. Ductility Anisotropy Induced by Ferrite in Direct Laser Deposited 17-4 PH Steel: Combined Microstructure and Dislocation Density Simulation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 765-776. |
[2] | Linxu Li, Xiufang Gong, Changshuai Wang, Yunsheng Wu, Hongyao Yu, Haijun Su, Lanzhang Zhou. Correlation Between Phase Stability and Tensile Properties of the Ni-Based Superalloy MAR-M247 [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 872-884. |
[3] | Guang-Lei Wang, Jin-Lai Liu, Ji-De Liu, Yi-Zhou Zhou, Xu-Dong Sun, Hai-Feng Zhang, Xiao-Feng Sun. Effect of Orientation on Stress-Rupture Property and Related Deformation Microstructure of a Ni-Base Re-containing Single-Crystal Superalloy at 900 °C [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 719-728. |
[4] | Dong Wu, Shitong Wei, Shanping Lu. A Study of Microstructure and Mechanical Properties for the Autogenous Single-Pass Butt Weldment of a Ferritic/Martensitic Steel Using Gas Tungsten Arc Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 628-638. |
[5] | Chenliang Chu, Weiping Chen, Zhen Chen, Zhenfei Jiang, Hao Wang, Zhiqiang Fu. Microstructure and Mechanical Behavior of FeNiCoCr and FeNiCoCrMn High-Entropy Alloys Fabricated by Powder Metallurgy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 445-454. |
[6] | Ibrahim Ondicho, Bernard Alunda, Fredrick Madaraka, Melody Chepkoech. Effect of Bimodal Grain Size Distribution on the Strain Hardening Behavior of a Medium-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 465-475. |
[7] | Long Xin, Yongming Han, Ligong Ling, Yonghao Lu, Tetsuo Shoji. Surface Oxidation and Subsurface Microstructure Evolution of Alloy 690TT Induced by Partial Slip Fretting Corrosion in High-Temperature Pure Water [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 543-554. |
[8] | Li-Li Zhang, Jie Song, Sajjad Ur Rehman, Jia-Jie Li, Lei Wang, Mu-Nan Yang, Ren-Hui Liu, Qing-Zheng Jiang, Zhen-Chen Zhong. Uneven Evolution of Microstructure, Magnetic Properties and Coercivity Mechanism of Mo-Substituted Nd-Ce-Fe-B Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 590-596. |
[9] | Chun-Hua Ma, Fu-Sheng Pan, Ding-Fei Zhang, Ai-Tao Tang, Zhi-Wen Lu. Effects of Sb Addition on Microstructural Evolution and Mechanical Properties of Mg-9Al-5Sn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 278-288. |
[10] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. |
[11] | Jinglin Liu, Qi Song, Lihui Song, Shude Ji, Mingshen Li, Zhen Jia, Kang Yang. A Novel Friction Stir Spot Riveting of Al/Cu Dissimilar Materials [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 135-144. |
[12] | Meichen Liang, Hao Zhang, Lifeng Zhang, Peng Xue, Dingrui Ni, Weizhen Wang, Zongyi Ma, Hengqiang Ye, Zhiqing Yang. Evolution of Quasicrystals and Long-Period Stacking Ordered Structures During Severe Plastic Deformation and Mixing of Dissimilar Mg Alloys Upon Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 12-24. |
[13] | Xudong Du, Feng Wang, Zhi Wang, Xingxing Li, Zheng Liu, Pingli Mao. Hot Tearing Susceptibility of AXJ530 Alloy Under Low-Frequency Alternating Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1259-1270. |
[14] | Chao-Yue Zhao, Xian-Hua Chen, Peng Peng, Teng Tu, Andrej Atrens, Fu-Sheng Pan. Microstructures and Mechanical Properties of Mg-xAl-1Sn-0.3Mn (x = 1, 3, 5) Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1217-1225. |
[15] | Dan-Yang Liu, Jin-Feng Li, Yong-Cheng Lin, Peng-Cheng Ma, Yong-Lai Chen, Xu-Hu Zhang, Rui-Feng Zhang. Cu/Li Ratio on the Microstructure Evolution and Corrosion Behaviors of Al-xCu-yLi-Mg Alloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1201-1216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||