Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (8): 1042-1050.DOI: 10.1007/s40195-021-01190-9
Previous Articles Next Articles
Yulun Wu1, Rui Hu1,2, Jieren Yang1,2,3(), Keren Zhang1, Xuyang Wang1
Received:
2020-09-11
Revised:
2020-11-24
Accepted:
2020-11-28
Online:
2021-02-05
Published:
2021-08-10
Contact:
Jieren Yang
About author:
Jieren Yang, yangjieren@nwpu.edu.cnYulun Wu, Rui Hu, Jieren Yang, Keren Zhang, Xuyang Wang. Active Eutectoid Decomposition of α → γ + τ1 and the Morphological Evolution in a Ru-Containing TiAl Alloy[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1042-1050.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 a Unrolled diffraction rings of 1450 C holding for 3 min taken by in situ heating synchrotron radiation; b, c low- and high-magnification SEM-BSE images of HT#1; d SEM-BSE image of HT#2
Fig. 3 TEM characterization of HT#1 sample: a bright field image and the corresponding SAED patterns; b dark field image of τ1 phase in a; c dark field image of γ phase in the rectangular region of a; d bright field image of other region; e HRTEM image of the signed region e in d; f to h FFT and i IFFT results of the corresponding areas of e
Fig. 4 SEM-BSE microstructure images under the different isothermal holding temperatures: a, b typical low- and high-magnification images of HT#3; c bulky net-like τ1 phase and coarse γ laths in HT#5; d bulky net-like τ1 phase and global morphology in HT#5, the inset is the high magnification of Region 1; e, f low- and high-magnification images of HT#6
Fig. 5 SEM-BSE microstructure images under the slow cooling. a, b fine net-like τ1 phase and sheaf-like region of HT#7; c, d bulky and abnormal eutectoid region of HT#8; e, f low- and high-magnification images of HT#9
Heat treatments | Typical characteristics | |||||
---|---|---|---|---|---|---|
Sheaf | Fine net | Bulky net | Coarse γ laths | Granular τ1 | Ripened γ | |
HT#1&2 | √ | × | × | × | × | √ |
HT#3&4 | √ | × | × | √ | × | √ |
HT#5 | √ | × | √ | √ | × | √ |
HT#6 | × | × | √ | √ | × | × |
HT#7 | √ | √ | × | × | × | √ |
HT#8 | × | × | × | √ | √ | √ |
HT#9 | × | × | √ | √ | × | × |
Table 1 Typical characteristics of different heat treatments
Heat treatments | Typical characteristics | |||||
---|---|---|---|---|---|---|
Sheaf | Fine net | Bulky net | Coarse γ laths | Granular τ1 | Ripened γ | |
HT#1&2 | √ | × | × | × | × | √ |
HT#3&4 | √ | × | × | √ | × | √ |
HT#5 | √ | × | √ | √ | × | √ |
HT#6 | × | × | √ | √ | × | × |
HT#7 | √ | √ | × | × | × | √ |
HT#8 | × | × | × | √ | √ | √ |
HT#9 | × | × | √ | √ | × | × |
Fig. 6 a-c and e-g SEM-BSE images and the corresponding EBSD Kikuchi patterns of HT#3 and HT#1, respectively; d crystallographic orientation sketch of a. Green, yellow and blue plane represent sample surface, OA and OB plane, respectively
Fig. 7 Schematic of TTT curves of Ti-45Al-2.0Ru-0.02B alloy. γL, S and A represent the γ lath, sluggish and active eutectoid decomposition, respectively
Eutectoid type | Sluggish | Active | |||||
---|---|---|---|---|---|---|---|
Parameters | D (m2/s) | \({X}_{\mathrm{E}}\)(%) | \({X}_{{\tau }_{1}}\)(%) | \({X}_{\alpha }\)(%) | λ (m) | Length (μm) | Length (μm) |
Approximate Values | 1.16 × 10-14 | 3.32 | 16.425 | 1.96 | 0.25 × 10-6 | 25 | 8 |
Table 2 Parameters used for calculating the approximate growth velocity
Eutectoid type | Sluggish | Active | |||||
---|---|---|---|---|---|---|---|
Parameters | D (m2/s) | \({X}_{\mathrm{E}}\)(%) | \({X}_{{\tau }_{1}}\)(%) | \({X}_{\alpha }\)(%) | λ (m) | Length (μm) | Length (μm) |
Approximate Values | 1.16 × 10-14 | 3.32 | 16.425 | 1.96 | 0.25 × 10-6 | 25 | 8 |
Morphology | Size (μm) | Occurred temperature (oC) | Growth rate (μm/s) | γ laths growth direction | Nucleation | Others | |
---|---|---|---|---|---|---|---|
Active | Sheaf | < 10 | < 1290 | 18 | E → A* | Homogeneous | γ ripen |
Sluggish | Bulky net | > 20 | 1305 ± 5 | 0.2 | A → E | Heterogeneous | — |
Table 3 Comparison between the active and sluggish eutectoid of α?→?γ?+?τ1
Morphology | Size (μm) | Occurred temperature (oC) | Growth rate (μm/s) | γ laths growth direction | Nucleation | Others | |
---|---|---|---|---|---|---|---|
Active | Sheaf | < 10 | < 1290 | 18 | E → A* | Homogeneous | γ ripen |
Sluggish | Bulky net | > 20 | 1305 ± 5 | 0.2 | A → E | Heterogeneous | — |
[1] |
R.I. Jaffee, Prog. Metal. Phys. 7, 65(1958)
DOI URL |
[2] | S. Banerjee, P. Mukhopadhyay, Phase Transformations Examples from Titanium and Zirconium Alloys, 1st edn. (Pergamon, Amsterdam, 2007), pp.675-682 |
[3] | D. Knittel, J.B.C. Wu, Mechanical Engineers’ Handbook, 2nd edn. (Wiley, New York, 1998), p.93 |
[4] | T.A. Bhaskaran, R. Seshadri, R.V. Krishnan, S. Ranganathan, Mat. Sci. Eng. A 98, 251(1988) |
[5] | T.A. Bhaskaran, R. Krishnan, S. Ranganathan, Metall. Mater. Trans. A 26, 1367(1995) |
[6] | P. Mukhopadhyay, S.K. Menon, S. Banerjee, R.C. Krishnan, Metall. Mater. Trans. A 10, 1071(1979) |
[7] |
R.J. Contieria, E.S.N. Lopesa, R. Carama, A. Devarajb, S. Nagb, R. Banerjeeb, Philos. Mag. 94, 2350(2014)
DOI URL |
[8] | S.A. Souza, C.R.M. Afonso, P.L. Ferrandini, A.A. Coelho, R. Caram, Mat. Sci. Eng. C 29, 1023(2009) |
[9] |
L. Kumar, R.V. Ramanujan, R. Tewari, P. Mukhopadhyay, S. Banerjee, Scr. Mater. 40, 723(1999)
DOI URL |
[10] |
D.A. Brice, P. Samimi, I. Ghamarian, Y. Liu, M.Y. Mendoza, M.J. Kenney, R.F. Reidy, M. Garcia-Avila, P.C. Collins, J. Alloy. Compd. 718, 22(2017)
DOI URL |
[11] |
H. Donthula, B. Vishwanadh, T. Alam, T. Borkar, R.J. Contieri, R. Caram, R. Banerjee, R. Tewari, G.K. Dey, S. Banerjee, Acta Mater. 168, 63(2019)
DOI |
[12] |
H.J. Lee, H.I. Aaronson, J. Mater. Sci. 23, 150(1988)
DOI URL |
[13] |
M. Carvalhoe, J. Mater. Sci. 15, 1224(1980)
DOI URL |
[14] | R. Yang, Acta Metall. Sin 51, 129(2015) |
[15] | Y.W. Kim, S.L. Kim, JOM 70, 553(2018) |
[16] | A. Khataee, H.M. Flower, D.R.F. West, Platin. Met. Rev. 33, 106(1989) |
[17] | Q. Liu, P. Nash, Intermetallics 19, 1282(2011) |
[18] |
A. Grytsiv, P. Rogl, H. Schmidt, G. Giester, J. Phase Equilib. 24, 511(2003)
DOI URL |
[19] |
Y.L. Wu, R. Hu, J.R. Yang, J. Alloy. Compd. 790, 42(2019)
DOI URL |
[20] |
M.W. Rackel, A. Stark, H. Gabrisch, N. Schell, A. Schreyer, F. Pyczak, Acta Mater. 121, 343(2016)
DOI URL |
[21] | A. Stark, M. Rackel, A.T. Tankoua, M. Oehring, N. Schell, L. Lottermoser, A. Schreyer, F. Pyczak, Metals 5, 2252(2015) |
[22] | S. Zghal, M. Thomas, A. Couret, Intermetallics 19, 1627(2011) |
[23] | M.J. Blackburn, In Some Aspects of Phase Transformation, in Titanium Alloys. ed. by R.I. Jaffee, N.E. Promisel, T.S. Technology, Application of Titanium, (Pergamon, Oxford, 1970), pp.633-643 |
[24] |
X.Y Wang, J.R. Yang, R. Hu, Z.T Gao, J.G. Li, H.Z. Fu, Acta Metall. Sin. (Engl. Lett.) 33, 1591(2020)
DOI URL |
[25] | G.W. Franti, J.C. Williams, H.I. Aaronson, Metall. Trans. A 9, 1641(1978) |
[26] |
I.S. Servi, D. Turnbull, Acta Metall. 14, 161(1966)
DOI URL |
[27] | M. Hillert, Decomposition of Austenite by Diffusional Processes (Interscience, New York, 1962), pp.197-237 |
[28] |
B. Li, Q.Y. Liu, S.J. Jia, Y. Ren, B. Wang, Acta Metall. Sin. (Engl. Lett.) 31, 1038(2018)
DOI URL |
[29] |
H.C. Kou, H.L. Zhang, Y.D. Chu, D. Huang, H. Nan, J.S. Li, Acta Metall. Sin. (Engl. Lett.) 28, 505(2015)
DOI URL |
[30] | J.L. Lee, H.K.D.H. Bhadeshia, Mat. Sci. Eng. A 171, 223(1993) |
[31] | D.A. Porter, K.E. Easterling, Phase Transformation in Metals and Alloys, 2nd edn. (Chapman & Hall, London, 1992), p.286 |
[32] | S. Divinski, F. Hisker, C. Klinkenberg, C. Herzig, Intermetallics 14, 792(2006) |
[1] | Jiafen Song, Zishu Chai, Jian Zheng, Qingfeng Wu, Feng He, Zenan Yang, Junjie Li, Jincheng Wang, Haiou Yang, Zhijun Wang. Design Fe-based Eutectic Medium-Entropy Alloys Fe2NiCrNbx [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1103-1108. |
[2] | Xuan Huang, Yong Dong, Shaomu Lu, Chuanqiang Li, Zhengrong Zhang. Effects of Homogenized Treatment on Microstructure and Mechanical Properties of AlCoCrFeNi2.2 Near-Eutectic High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1079-1086. |
[3] | Zhitao Yu, Minghui Chen, Qunchang Wang, Xiaolan Wang, Fuhui Wang. Effect of Interfacial Microstructure on Mechanical and Tribological Properties of Cu/WS2 Self-lubricating Composites Sintered by Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 913-924. |
[4] | Chuanfeng Wu, Junmei Chen, Zhiyuan Yu, Hao Lu, Chun Yu, Jijin Xu. Ductility Anisotropy Induced by Ferrite in Direct Laser Deposited 17-4 PH Steel: Combined Microstructure and Dislocation Density Simulation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 765-776. |
[5] | Ling-Yang Yuan, Pan-Wen Han, Ghulam Asghar, Bao-Liang Liu, Jin-Ping Li, Bin Hu, Peng-Huai Fu, Li-Ming Peng. Development of High Strength and Toughness Non-Heated Al-Mg-Si Alloys for High-Pressure Die-Casting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 845-860. |
[6] | Guang-Lei Wang, Jin-Lai Liu, Ji-De Liu, Yi-Zhou Zhou, Xu-Dong Sun, Hai-Feng Zhang, Xiao-Feng Sun. Effect of Orientation on Stress-Rupture Property and Related Deformation Microstructure of a Ni-Base Re-containing Single-Crystal Superalloy at 900 °C [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 719-728. |
[7] | Dong Wu, Shitong Wei, Shanping Lu. A Study of Microstructure and Mechanical Properties for the Autogenous Single-Pass Butt Weldment of a Ferritic/Martensitic Steel Using Gas Tungsten Arc Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 628-638. |
[8] | Chenliang Chu, Weiping Chen, Zhen Chen, Zhenfei Jiang, Hao Wang, Zhiqiang Fu. Microstructure and Mechanical Behavior of FeNiCoCr and FeNiCoCrMn High-Entropy Alloys Fabricated by Powder Metallurgy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 445-454. |
[9] | Ibrahim Ondicho, Bernard Alunda, Fredrick Madaraka, Melody Chepkoech. Effect of Bimodal Grain Size Distribution on the Strain Hardening Behavior of a Medium-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 465-475. |
[10] | Long Xin, Yongming Han, Ligong Ling, Yonghao Lu, Tetsuo Shoji. Surface Oxidation and Subsurface Microstructure Evolution of Alloy 690TT Induced by Partial Slip Fretting Corrosion in High-Temperature Pure Water [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 543-554. |
[11] | Li-Li Zhang, Jie Song, Sajjad Ur Rehman, Jia-Jie Li, Lei Wang, Mu-Nan Yang, Ren-Hui Liu, Qing-Zheng Jiang, Zhen-Chen Zhong. Uneven Evolution of Microstructure, Magnetic Properties and Coercivity Mechanism of Mo-Substituted Nd-Ce-Fe-B Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 590-596. |
[12] | Chun-Hua Ma, Fu-Sheng Pan, Ding-Fei Zhang, Ai-Tao Tang, Zhi-Wen Lu. Effects of Sb Addition on Microstructural Evolution and Mechanical Properties of Mg-9Al-5Sn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 278-288. |
[13] | L. B. Tong, J. H. Chu, D. N. Zou, Q. Sun, S. Kamado, H. G. Brokmeier, M. Y. Zheng. Simultaneously Enhanced Mechanical Properties and Damping Capacities of ZK60 Mg Alloys Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 265-277. |
[14] | Xi Zhao, Fa-Fa Yan, Zhi-Min Zhang, Peng-Cheng Gao, Shu-Chang Li. Influence of Heat Treatment on Precipitation Behavior and Mechanical Properties of Extruded AZ80 Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 54-64. |
[15] | Jinglin Liu, Qi Song, Lihui Song, Shude Ji, Mingshen Li, Zhen Jia, Kang Yang. A Novel Friction Stir Spot Riveting of Al/Cu Dissimilar Materials [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 135-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||