Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (11): 1907-1920.DOI: 10.1007/s40195-024-01749-2
Previous Articles Next Articles
Huifang Zhang1,2, Jun Xie1(), Qi Li1(
), Hao Wu1, Jinjiang Yu1, Hongyu Chai1, Fengjiang Zhang1, Jinguo Li1, Yizhou Zhou1, Xiaofeng Sun1
Received:
2024-03-13
Revised:
2024-05-13
Accepted:
2024-05-29
Online:
2024-11-10
Published:
2024-07-22
Contact:
Jun Xie, junxie@imr.ac.cn;
Qi Li, qli17b@imr.ac.cnHuifang Zhang, Jun Xie, Qi Li, Hao Wu, Jinjiang Yu, Hongyu Chai, Fengjiang Zhang, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Influence of Substituting W for Nb or Hf on Solidification Behavior of a Typical Co-Ni-Al-W Based Superalloy[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(11): 1907-1920.
Add to citation manager EndNote|Ris|BibTeX
Alloys | ρ (g·cm−3) | Percentage | Co | Al | W | Ni | Cr | Ta | Ti | C | B | Zr | Nb | Hf |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Base | 9.18 | at.% | 58.79 | 9.38 | 5.21 | 16.46 | 6.09 | 1.81 | 1.28 | 0.79 | 0.17 | 0.01 | - | - |
wt% | 54.48 | 3.98 | 15.06 | 15.19 | 4.98 | 5.15 | 0.96 | 0.15 | 0.03 | 0.02 | - | - | ||
Nb | 9.02 | at.% | 58.77 | 9.40 | 4.14 | 16.54 | 6.08 | 1.81 | 1.30 | 0.78 | 0.13 | 0.01 | 1.04 | - |
wt% | 55.10 | 4.05 | 12.14 | 15.50 | 5.05 | 5.24 | 0.99 | 0.15 | 0.02 | 0.02 | 1.54 | - | ||
Hf | 9.10 | at.% | 59.05 | 9.30 | 4.14 | 16.55 | 6.13 | 1.88 | 1.34 | 0.80 | 0.17 | 0.01 | - | 1.09 |
wt% | 54.23 | 3.94 | 11.96 | 15.26 | 5.01 | 5.34 | 1.01 | 0.15 | 0.03 | 0.02 | - | 3.05 |
Table 1 Measured compositions and density of three experimental alloys
Alloys | ρ (g·cm−3) | Percentage | Co | Al | W | Ni | Cr | Ta | Ti | C | B | Zr | Nb | Hf |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Base | 9.18 | at.% | 58.79 | 9.38 | 5.21 | 16.46 | 6.09 | 1.81 | 1.28 | 0.79 | 0.17 | 0.01 | - | - |
wt% | 54.48 | 3.98 | 15.06 | 15.19 | 4.98 | 5.15 | 0.96 | 0.15 | 0.03 | 0.02 | - | - | ||
Nb | 9.02 | at.% | 58.77 | 9.40 | 4.14 | 16.54 | 6.08 | 1.81 | 1.30 | 0.78 | 0.13 | 0.01 | 1.04 | - |
wt% | 55.10 | 4.05 | 12.14 | 15.50 | 5.05 | 5.24 | 0.99 | 0.15 | 0.02 | 0.02 | 1.54 | - | ||
Hf | 9.10 | at.% | 59.05 | 9.30 | 4.14 | 16.55 | 6.13 | 1.88 | 1.34 | 0.80 | 0.17 | 0.01 | - | 1.09 |
wt% | 54.23 | 3.94 | 11.96 | 15.26 | 5.01 | 5.34 | 1.01 | 0.15 | 0.03 | 0.02 | - | 3.05 |
Fig. 2 Backscattered scanning electron microscope micrographs of experimental alloys microstructures: a-c microstructures at low magnification, d-f interdendritic precipitation phases
Presumed phase | Measure method | Co | Al | W | Ni | Cr | Ta | Ti | Zr | Nb | Hf |
---|---|---|---|---|---|---|---|---|---|---|---|
M3B2 | SEM-EDS | 46.7 | 0.2 | 15.3 | 5.9 | 2.7 | 24.7 | 4.4 | 0.1 | - | - |
MC (Base alloy) | SEM-EDS | 5.5 | - | - | 2.1 | 0.4 | 60.8 | 29.5 | 2.0 | - | - |
MC (Nb alloy) | SEM-EDS | 6.6 | - | 3.6 | 2.1 | 0.6 | 41.1 | 20.2 | 0.1 | 25.8 | - |
MC (Hf alloy) | SEM-EDS | 7.3 | - | 4.4 | 1.5 | 0.7 | 45.0 | 18.5 | - | - | 22.7 |
Co3Ta | TEM-EDS | 58.6 | 1.8 | 2.0 | 7.6 | 4.0 | 12.1 | 2.3 | 2.4 | 9.1 | - |
μ-Co7Nb6 | SEM-EDS | 47.5 | 0.3 | 9.7 | 6.1 | 3.8 | 11.0 | 2.7 | 0.5 | 18.4 | - |
Eutectic γ + γʹ | SEM-EDS | 56.4 | 9.3 | 3.4 | 17.4 | 4.7 | 3.3 | 2.2 | - | 2.1 | - |
β | TEM-EDS | 31.1 | 19.5 | - | 15.0 | 2.0 | 19.9 | 2.5 | 0.6 | - | 9.2 |
Laves | TEM-EDS | 54.1 | 3.6 | 1.6 | 16.7 | 1.8 | 4.8 | 2.0 | - | - | 15.4 |
Table 2 Compositions of interdendritic phases measured by SEM-EDS and TEM-EDS (at.%)
Presumed phase | Measure method | Co | Al | W | Ni | Cr | Ta | Ti | Zr | Nb | Hf |
---|---|---|---|---|---|---|---|---|---|---|---|
M3B2 | SEM-EDS | 46.7 | 0.2 | 15.3 | 5.9 | 2.7 | 24.7 | 4.4 | 0.1 | - | - |
MC (Base alloy) | SEM-EDS | 5.5 | - | - | 2.1 | 0.4 | 60.8 | 29.5 | 2.0 | - | - |
MC (Nb alloy) | SEM-EDS | 6.6 | - | 3.6 | 2.1 | 0.6 | 41.1 | 20.2 | 0.1 | 25.8 | - |
MC (Hf alloy) | SEM-EDS | 7.3 | - | 4.4 | 1.5 | 0.7 | 45.0 | 18.5 | - | - | 22.7 |
Co3Ta | TEM-EDS | 58.6 | 1.8 | 2.0 | 7.6 | 4.0 | 12.1 | 2.3 | 2.4 | 9.1 | - |
μ-Co7Nb6 | SEM-EDS | 47.5 | 0.3 | 9.7 | 6.1 | 3.8 | 11.0 | 2.7 | 0.5 | 18.4 | - |
Eutectic γ + γʹ | SEM-EDS | 56.4 | 9.3 | 3.4 | 17.4 | 4.7 | 3.3 | 2.2 | - | 2.1 | - |
β | TEM-EDS | 31.1 | 19.5 | - | 15.0 | 2.0 | 19.9 | 2.5 | 0.6 | - | 9.2 |
Laves | TEM-EDS | 54.1 | 3.6 | 1.6 | 16.7 | 1.8 | 4.8 | 2.0 | - | - | 15.4 |
Fig. 3 TEM images and selected area diffraction patterns (SADP) of alloy Nb: a FIB cutting position, b FIB cutting completed sample, c TEM images of two phases, d TEM morphology and SADP pattern of Co7Nb6, e SADP of the TEM morphology and SADP pattern of Co3Ta, f TEM-EDS element distributions mapping
Fig. 4 TEM images and selected area diffraction patterns (SADP) of alloy Hf: a FIB cutting position, b FIB cutting completed sample, c TEM images of two phases, d TEM morphology and SADP pattern of β-CoAl phase, e SADP of the TEM morphology and SADP pattern of Laves phase, f TEM-EDS element distributions mapping
Alloys | Methods | TL | TS | MC | Eutectic (γ + γʹ) | M3B2 | Co3Ta | Laves | β | Solidification temperature range |
---|---|---|---|---|---|---|---|---|---|---|
Base | Heating | - | 1353 | - | 1256 | - | - | - | - | TL-TS = 30 |
Cooling | 1383 | - | 1351 | - | 1141 | - | - | - | ||
Nb | Heating | - | 1332 | - | 1201 | - | - | - | - | TL-TS = 36 |
Cooling | 1368 | - | 1337 | 1153 | - | 1110 | - | - | ||
Hf | Heating | - | 1330 | - | 1125 | - | - | 1173 | 1138 | TL-TS = 36 |
Cooling | 1366 | - | 1343 | - | - | - | 1147 | - |
Table 3 Phase transformation temperatures measured by DSC (°C)
Alloys | Methods | TL | TS | MC | Eutectic (γ + γʹ) | M3B2 | Co3Ta | Laves | β | Solidification temperature range |
---|---|---|---|---|---|---|---|---|---|---|
Base | Heating | - | 1353 | - | 1256 | - | - | - | - | TL-TS = 30 |
Cooling | 1383 | - | 1351 | - | 1141 | - | - | - | ||
Nb | Heating | - | 1332 | - | 1201 | - | - | - | - | TL-TS = 36 |
Cooling | 1368 | - | 1337 | 1153 | - | 1110 | - | - | ||
Hf | Heating | - | 1330 | - | 1125 | - | - | 1173 | 1138 | TL-TS = 36 |
Cooling | 1366 | - | 1343 | - | - | - | 1147 | - |
Fig. 6 Solidification microstructures of alloys quenched at different temperatures by SEM(BSE): a-e alloy Base at 1400 °C, 1380 °C, 1360 °C, 1340 °C, 1300 °C, f-j alloy Nb at 1380 °C, 1360 °C, 1340 °C, 1320 °C, 1300 °C, k-o alloy Hf at 1380 °C, 1360 °C, 1340 °C, 1320 °C, 1300 °C
Fig. 7 Relationship between the isothermal temperature and the volume fraction of liquid during the solidification process: a alloy Base, b alloy Nb, c alloy Hf
Fig. 9 Solidification microstructures of alloys quenched at different temperatures: a-c alloy Base at 1250 °C, 1140 °C, 1130 °C, d-f alloy Nb at 1150 °C, 1140 °C, 1110 °C, g-i alloy Hf at 1150 °C, 1140 °C, 1130 °C
Fig. 10 Simulation results of three experimental alloys calculated by Thermo-calc: a, c, e equilibrium phases fraction corresponding to different temperatures, b, d, f solidification sequence calculated by Scheil model, a-b alloy Base, c-d alloy Nb, e-f alloy Hf
Methods | Alloy | TL | MC | TS | Laves | M3B2 | μ | β | Eutectic (γ + γʹ) | Co3Ta |
---|---|---|---|---|---|---|---|---|---|---|
DSC | Base | 1383 | 1351 | 1353 | - | 1141 | - | - | 1256 | - |
Nb | 1368 | 1337 | 1332 | - | - | 1110 | - | 1177 | - | |
Hf | 1366 | 1343 | 1330 | 1160 | - | - | 1138 | 1125 | - | |
Isothermal solidification | Base | 1380-1400 | ~ 1340 | ~ 1130 | - | ~ 1140 | - | - | ~ 1250 | - |
Nb | 1360-1380 | ~ 1340 | ~ 1110 | - | - | ~ 1110 | - | ~ 1150 | ~ 1140 | |
Hf | 1360-1380 | ~ 1360 | ~ 1130 | ~ 1140 | - | - | ~ 1140 | ~ 1130 | - | |
TC equilibrium | Base | 1380 | 1340 | 1216 | - | 1220 | - | 1040 | - | - |
Nb | 1370 | 1360 | 1222 | - | 1223 | - | 1040 | - | - | |
Hf | 1378 | 1354 | 1240 | 1448 | 1241 | - | 1040 | - | - | |
Scheil model | Base | 1387 | 1347 | 1090 | 1207 | 1128 | 1148 | - | - | - |
Nb | 1375 | 1368 | 1080 | 1220 | 1105 | 1105 | - | - | - | |
Hf | 1476 | 1355 | 1080 | 1476 | 1142 | 1120 | - | - | - |
Table 4 Phase transformation temperature measured by DSC, isothermal solidification experiments, TC equilibrium calculation and Scheil model calculation (°C)
Methods | Alloy | TL | MC | TS | Laves | M3B2 | μ | β | Eutectic (γ + γʹ) | Co3Ta |
---|---|---|---|---|---|---|---|---|---|---|
DSC | Base | 1383 | 1351 | 1353 | - | 1141 | - | - | 1256 | - |
Nb | 1368 | 1337 | 1332 | - | - | 1110 | - | 1177 | - | |
Hf | 1366 | 1343 | 1330 | 1160 | - | - | 1138 | 1125 | - | |
Isothermal solidification | Base | 1380-1400 | ~ 1340 | ~ 1130 | - | ~ 1140 | - | - | ~ 1250 | - |
Nb | 1360-1380 | ~ 1340 | ~ 1110 | - | - | ~ 1110 | - | ~ 1150 | ~ 1140 | |
Hf | 1360-1380 | ~ 1360 | ~ 1130 | ~ 1140 | - | - | ~ 1140 | ~ 1130 | - | |
TC equilibrium | Base | 1380 | 1340 | 1216 | - | 1220 | - | 1040 | - | - |
Nb | 1370 | 1360 | 1222 | - | 1223 | - | 1040 | - | - | |
Hf | 1378 | 1354 | 1240 | 1448 | 1241 | - | 1040 | - | - | |
Scheil model | Base | 1387 | 1347 | 1090 | 1207 | 1128 | 1148 | - | - | - |
Nb | 1375 | 1368 | 1080 | 1220 | 1105 | 1105 | - | - | - | |
Hf | 1476 | 1355 | 1080 | 1476 | 1142 | 1120 | - | - | - |
Fig. 11 Structure map for TCP phase prediction, with average valence band filling $\overline{N }$ and relative volume difference $\Delta V/\overline{V }$ (Eqs. 2, 3): a structure map analysis of intermetallic precipitates, b variation of residual liquid during solidification
[1] | T.X. Li, S.D. Wang, W.X. Fan, Y.P. Lu, T.M. Wang, T.J. Li, P.K. Liaw, Acta Mater. 246, 118728 (2023) |
[2] | T.X. Li, W.N. Jiao, J.W. Miao, Y.P. Lu, E.Y. Guo, T.M. Wang, T.J. Li, P.K. Liaw, Mater. Sci. Eng. A 827, 142061 (2021) |
[3] | B.X. Cao, Y.L. Zhao, T. Yang, C.T. Liu, Adv. Eng. Mater. 23, 11 (2021) |
[4] | H.Y. Yan, V.A. Vorontsov, D. Dye, Intermetallics 48, 44 (2014) |
[5] | L.L. Zhu, X. Yu, W.F. Li, L.N. Zhang, N.X. Zhang, Y.A. Lv, L. Zhao, W.Y. Zhang, Z. Wang, H.Y. Yu, Z.N. Bi, H. Han, J.J. Ruan, L. Jiang, Scr. Mater. 229, 1 (2023) |
[6] | D.W. Han, L.X. Yu, F. Liu, B. Zhang, W.R. Sun, Acta Metall. Sin. -Engl. Lett. 31, 1224 (2018) |
[7] | Y.G. Tan, F. Liu, A.W. Zhang, D.W. Han, X.Y. Yao, W.W. Zhang, W.R. Sun, Acta Metall. Sin. -Engl. Lett. 32, 1298 (2019) |
[8] | K.A. Christofidou, M.C. Hardy, H.Y. Li, C. Argyrakis, H. Kitaguchi, N.G. Jones, P.M. Mignanelli, A.S. Wilson, O.M. Messé, E.J. Pickering, R.J. Gilbert, C.M. Rae, S.Y. Yu, A. Evans, D. Child, P. Bowen, H.J. Stone, Metall. Mater. Trans. A 49, 3896 (2018) |
[9] | Y.R. Zheng, Acta Metall. Sin. 22, A119 (1986) |
[10] | Y.R. Zheng, Y.L. Cai, Z.C. Ruan, S.W. Ma, J. Aerona. Mater. 26, 25 (2006) |
[11] | Q.Z. Chen, C.N. Jones, D.M. Knowles, Scr. Mater. 47, 10 (2002) |
[12] | Q.Z. Chen, N. Jones, D.M. Knowles, Acta Mater. 50, 1095 (2002) |
[13] | H.W. Zhang, X.Z. Qin, X.W. Li, L.Z. Zhou, Mater. Sci. Eng. A 711, 303 (2018) |
[14] | P. Kontis, D.M. Collins, S. Johansson, A.J. Wilkinson, J.J. Moverare, R.C. Reed, Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys. 31 (2016) |
[15] | A.J. Wilkinson, E.E. Clarke, T.B. Britton, P. Littlewood, J. Strain Anal. Eng. Des. 45, 365 (2010) |
[16] | J.S. Hou, J.T. Guo, Y.X. Wu, L.Z. Zhou, H.Q. Ye, Mater. Sci. Eng. A 527, 1548 (2010) |
[17] |
Y.S. Zhao, J. Zhang, Y.S. Luo, B. Zhang, G. Sha, L.F. Li, D.Z. Tang, Q. Feng, Acta Mater. 176, 109 (2019)
DOI |
[18] | S. Srinivasan, S.R. Broderick, R.F. Zhang, A. Mishra, S.B. Sinnott, S.K. Saxena, J.M. LeBeau, K. Rajan, Sci. Rep. 5, 7 (2015) |
[19] | S.F. Wang, S.S. Li, J.B. Sha, Rare Metal Mat. Eng. 42, 1003 (2013) |
[20] | Y. Zhang, H.D. Fu, J.L. He, J.X. Xie, J. Alloy. Compd. 891, 12 (2022) |
[21] | J. Kossmann, C.H. Zenk, I. Lopez-Galilea, S. Neumeier, A. Kostka, S. Huth, W. Theisen, M. Göken, R. Drautz, T. Hammerschmidt, J. Mater. 50, 6329 (2015) |
[22] | X.Z. Zhou, H.D. Fu, Y. Zhang, H. Xu, J.X. Xie, J. Alloy. Compd. 768, 464 (2018) |
[23] | X.Z. Zhou, H.D. Fu, F. Xue, Y. Zhang, J.X. Xie, Scr. Mater. 181, 30 (2020) |
[24] | J. Liu, J.J. Yu, Y.H. Yang, Y.Z. Zhou, X.F. Sun, Mater. Sci. Eng. A 745, 404 (2019) |
[25] | X.F. Ding, T. Mi, F. Xue, H.J. Zhou, M.L. Wang, J. Alloy. Compd. 599, 159 (2014) |
[26] | X.Z. Zhou, H.D. Fu, Y. Zhang, H. Xu, J.X. Xie, Adv. Eng. Mater. 21, 10 (2019) |
[27] | J. Lecomte-Beckers, Metall. Mater. Trans. A 19, 2333 (1988) |
[28] | Z.X. Shi, J.X. Dong, M.C. Zhang, L. Zheng, J. Alloy. Compd. 571, 168 (2013) |
[29] | H. Xu, Y.H. Zhang, H.D. Fu, F. Xue, X.Z. Zhou, J.X. Xie, J. Alloy. Compd. 891, 12 (2022) |
[30] | Q. Li, J. Xie, J.J. Yu, D.L. Shu, G.C. Hou, X.F. Sun, Y.Z. Zhou, J. Alloy. Compd. 854, 10 (2021) |
[31] | G.E. Fuchs, B.A. Boutwell, JOM 54, 45 (2002) |
[32] | S.V. Nagender-Naidu, A.M. Sriramamurthy, P.R. Rao, Indian Inst. Met. 37, 107 (1984) |
[33] | J.K. Pargeter, W. Hume-Rothery, J. Less Common Met. 12, 366 (1967) |
[34] | Z.J. Zhou, R. Zhang, C.Y. Cui, Y.Z. Zhou, X.F. Sun, Acta Metall. Sin. -Engl. Lett. 34, 943 (2021) |
[35] | X.X. Li, C.L. Jia, Y. Zhang, S.M. Lv, Z.H. Jiang, Vacuum 177, 109379 (2020) |
[36] | K. Zhao, L.H. Lou, Y.H. Ma, Z.Q. Hu, Mater. Sci. Eng. A 476, 372 (2008) |
[37] | B. Seiser, R. Drautz, D.G. Pettifor, Acta Mater. 59, 2 (2011) |
[38] | L. Pauling, J. Am. Chem. Soc. 69, 542 (1947) |
[39] | W.H. Zachariasen, J. Inorg. Nucl. Chem. 35, 3487 (1973) |
[40] | I. Lopez-Galilea, I. Kossmann, A. Kostka, R. Drautz, L. Mujica Roncery, T. Hammerschmidt, S. Huth, W. Theisen, J. Mater. Sci. 51, 2653 (2016) |
[41] | B. Ghebouli, M.A. Ghebouli, M. Fatmi, N. Bouarissa, M. Benkerri, I.A. Ibrahim, Acta Metall. Sin. -Engl. Lett. 24, 255 (2011) |
[42] | B. Cheng, Y.K. Li, X.X. Li, H.B. Ke, L. Wang, T.Q. Cao, D. Wan, B.P. Wang, Y.F. Xue, Acta Metall. Sin. -Engl. Lett. 36, 1113 (2023) |
[1] | Lei Hu, Liqin Zhang, Feng Hu, Kuan Zheng, Guohong Zhang. Effect of Central Multiphase Microstructure of Thick Plates on Work Hardening and Crack Propagation [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 325-338. |
[2] | Zhezhu Lao, Xingpu Zhang, Jiangwei Wang, Jixue Li. Atomistic Evolution of Hf2S/γ′ Interfaces in a Hf-containing Ni-based Single-Crystal Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 1038-1046. |
[3] | Zhen Jiang, Dongfeng Shi, Jin Zhang, Tianming Li, Liwei Lu. Effect of Zn and Y Additions on Grain Boundary Movement of Mg Binary Alloys During Static Recrystallization [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 179-191. |
[4] | Linshuo Dong, Feiyang Wang, Hong-Hui Wu, Mengjie Gao, Penghui Bai, Shuize Wang, Guilin Wu, Junheng Gao, Xiaoye Zhou, Xinping Mao. Enhanced Hydrogen Embrittlement Resistance via Cr Segregation in Nanocrystalline Fe-Cr Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 1925-1935. |
[5] | Jiawei Tang, Yiren Wang, Yong Jiang, Jiangang Yao, Hao Zhang. Solute Segregation to Grain Boundaries in Al: A First-Principles Evaluation [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1572-1582. |
[6] | Junwei Sha, Meixian Li, Lizhuang Yang, Xudong Rong, Bowen Pu, Dongdong Zhao, Simi Sui, Xiang Zhang, Chunnian He, Jianglin Lan, Naiqin Zhao. Si-Assisted Solidification Path and Microstructure Control of 7075 Aluminum Alloy with Improved Mechanical Properties by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1424-1438. |
[7] | Yong Zhao, Haijun Su, Guangrao Fan, Chenglin Liu, Taiwen Huang, Wenchao Yang, Jun Zhang, Lin Liu, Hengzhi Fu. Tailoring Microstructure and Microsegregation in a Directionally Solidified Ni-Based SX Superalloy by a Weak Transverse Static Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1164-1174. |
[8] | Yujian Wang, Shuo Chu, Zhijun Wang, Junjie Li, Jincheng Wang. On Ti6Al4V Microsegregation in Electron Beam Additive Manufacturing with Multiphase-Field Simulation Coupled with Thermodynamic Data [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 425-438. |
[9] | Jing Wang, Wei Li, Xiaodong Zhu, Li You, Laiqi Zhang. Characterization of the Trace Phosphorus Segregation and Mechanical Properties of Dual-Phase Steels [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 341-352. |
[10] | Yanan Wang, Sansan Shuai, Chenglin Huang, Tao Jing, Chaoyue Chen, Tao Hu, Jiang Wang, Zhongming Ren. Revealing the Diversity of Dendritic Morphology Evolution During Solidification of Magnesium Alloys using Synchrotron X-ray Imaging: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 177-200. |
[11] | Zijian Zhou, Rui Zhang, Chuanyong Cui, Yizhou Zhou, Xiaofeng Sun. Effects of Homogenization Treatment on the Microsegregation of a Ni-Co Based Superalloy Produced by Directional Solidification [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 943-954. |
[12] | Lei-Lei Xing, Cong-Cong Zhao, Hao Chen, Zhi-Jian Shen, Wei Liu. Microstructure of a Ti-50 wt% Ta alloy produced via laser powder bed fusion [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 981-990. |
[13] | Zihao Tan, Lin Yang, Xinguang Wang, Yunling Du, Lihua Ye, Guichen Hou, Yanhong Yang, Jinlai Liu, Jide Liu, Jinguo Li, Yizhou Zhou, Xiaofeng Sun. Evolution of TCP Phase During Long Term Thermal Exposure in Several Re-Containing Single Crystal Superalloys [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 731-740. |
[14] | Sheng-Ya He, Chuan-Jun Li, Tong-Jun Zhan, Wei-Dong Xuan, Jiang Wang, Zhong-Ming Ren. Reduction in Microsegregation in Al-Cu Alloy by Alternating Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 267-274. |
[15] | Bin Yin, Guang Xie, Xiangwei Jiang, Shaohua Zhang, Wei Zheng, Langhong Lou. Microstructural Instability of an Experimental Nickel-Based Single-Crystal Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1433-1441. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||