Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (7): 943-954.DOI: 10.1007/s40195-021-01192-7
Previous Articles Next Articles
Zijian Zhou1,2, Rui Zhang1(), Chuanyong Cui1(
), Yizhou Zhou1, Xiaofeng Sun1
Received:
2020-08-19
Revised:
2020-11-06
Accepted:
2020-11-23
Online:
2021-02-05
Published:
2021-02-05
Contact:
Rui Zhang,Chuanyong Cui
About author:
Rui Zhang, rzhang@imr.ac.cn;Zijian Zhou, Rui Zhang, Chuanyong Cui, Yizhou Zhou, Xiaofeng Sun. Effects of Homogenization Treatment on the Microsegregation of a Ni-Co Based Superalloy Produced by Directional Solidification[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 943-954.
Add to citation manager EndNote|Ris|BibTeX
Ni | Co | Cr | Al + Ti | Mo | W | C + B + Zr |
---|---|---|---|---|---|---|
Bal. | 20-25 | 13-15 | 7.4-8.4 | 2.4-2.8 | 1.1-1.5 | 0.04-0.11 |
Table 1 Chemical compositions of the Ni-Co based alloy (wt%)
Ni | Co | Cr | Al + Ti | Mo | W | C + B + Zr |
---|---|---|---|---|---|---|
Bal. | 20-25 | 13-15 | 7.4-8.4 | 2.4-2.8 | 1.1-1.5 | 0.04-0.11 |
Fig. 2 SEM micrographs of a longitudinal cross sections of the DS specimen, b irregular γ′ in the interdendritic region and c fine γ′ in the dendrite core region
Fig. 3 SEM micrographs of main precipitates in the new Ni-Co based alloy: a (γ + γ′) eutectic; cη phase; b, d EDS point analyses from the eutectic and η phase constituent; e TEM morphology of ηphase (the inset is the SAED pattern of η phase)
Ni | Co | Cr | Al | Ti | Mo | W | |
---|---|---|---|---|---|---|---|
Matrix | 51.15 | 22.16 | 11.17 | 3.44 | 8.59 | 2.45 | 1.04 |
(γ + γ′) eutectic | 60.91 | 17.63 | 3.84 | 5.73 | 11.40 | 0.38 | 0.11 |
η phase | 58.42 | 16.93 | 3.23 | 2.51 | 18.15 | 0.67 | 0.09 |
Table 2 Compositions of the different microstructures in the interdendritic region (wt%)
Ni | Co | Cr | Al | Ti | Mo | W | |
---|---|---|---|---|---|---|---|
Matrix | 51.15 | 22.16 | 11.17 | 3.44 | 8.59 | 2.45 | 1.04 |
(γ + γ′) eutectic | 60.91 | 17.63 | 3.84 | 5.73 | 11.40 | 0.38 | 0.11 |
η phase | 58.42 | 16.93 | 3.23 | 2.51 | 18.15 | 0.67 | 0.09 |
Co | Cr | Al | Ti | Mo | W | |
---|---|---|---|---|---|---|
Dendritic core | 25.70 | 15.72 | 2.53 | 3.86 | 2.90 | 2.36 |
Interdendritic region | 23.22 | 12.11 | 2.64 | 7.82 | 2.74 | 1.43 |
k | 1.11 | 1.30 | 0.96 | 0.49 | 1.06 | 1.65 |
Table 3 Element distribution in different regions (wt%) and segregation coefficient
Co | Cr | Al | Ti | Mo | W | |
---|---|---|---|---|---|---|
Dendritic core | 25.70 | 15.72 | 2.53 | 3.86 | 2.90 | 2.36 |
Interdendritic region | 23.22 | 12.11 | 2.64 | 7.82 | 2.74 | 1.43 |
k | 1.11 | 1.30 | 0.96 | 0.49 | 1.06 | 1.65 |
Fig. 5 Dendritic microstructure evolution of the ingot after homogenizing for 2 h at different temperatures: a 1100 °C; b 1120 °C; c 1140 °C; d 1160 °C; e 1180 °C, f 1200 °C
Fig. 6 Microstructure evolutions of eutectic and η phase in the ingot after homogenizing for 2 h at different temperatures: a 1100 °C; b 1120 °C; c 1140 °C; d 1160 °C; e 1180 °C, f 1200 °C
Temperature | Time (h) | W (wt%) | Ti (wt%) | ||||
---|---|---|---|---|---|---|---|
CM | Cm | \(\delta\) | CM | Cm | $\delta$ | ||
As-cast | 0 | 2.49 | 1.17 | 1 | 7.94 | 3.86 | 1 |
1180 °C | 1 | 2.37 | 1.52 | 0.64 | 6.86 | 4.42 | 0.63 |
1180 °C | 1.5 | 2.28 | 1.58 | 0.53 | 6.79 | 4.70 | 0.51 |
1180 °C | 2 | 2.15 | 1.61 | 0.41 | 6.41 | 4.88 | 0.37 |
1180 °C | 4 | 2.02 | 1.62 | 0.32 | 6.11 | 4.89 | 0.29 |
Table 4 Variations in W and Ti contents of the as-cast and homogenized alloys across the EDS point analyses
Temperature | Time (h) | W (wt%) | Ti (wt%) | ||||
---|---|---|---|---|---|---|---|
CM | Cm | \(\delta\) | CM | Cm | $\delta$ | ||
As-cast | 0 | 2.49 | 1.17 | 1 | 7.94 | 3.86 | 1 |
1180 °C | 1 | 2.37 | 1.52 | 0.64 | 6.86 | 4.42 | 0.63 |
1180 °C | 1.5 | 2.28 | 1.58 | 0.53 | 6.79 | 4.70 | 0.51 |
1180 °C | 2 | 2.15 | 1.61 | 0.41 | 6.41 | 4.88 | 0.37 |
1180 °C | 4 | 2.02 | 1.62 | 0.32 | 6.11 | 4.89 | 0.29 |
W | Ti | Mo | Cr | Co | Al |
---|---|---|---|---|---|
11.02 | 11.97 | 12.76 | 19.97 | 20.82 | 23.25 |
Table 5 Diffusion coefficients of W, Ti, Mo, Cr, Co and Al at 1180 °C (× 10-15 m2 s-1)
W | Ti | Mo | Cr | Co | Al |
---|---|---|---|---|---|
11.02 | 11.97 | 12.76 | 19.97 | 20.82 | 23.25 |
[1] |
Y. Yuan, Y.F. Gu, T. Osada, Z.H. Zhong, T. Yokokawa, H. Harada , Scr. Mater. 66, 884(2012)
DOI URL |
[2] | R.C. Reed , The Superalloys: Fundaments and Applications (Cambridge University Press, Cambridge, 2006). |
[3] |
R. Zhang, C. Tian, C. Cui, Y. Zhou, X. Sun , J. Alloys Compd. 818, 152863(2020)
DOI URL |
[4] | F.J. Liu, M.C. Zhang, J.X. Dong, Y.W. Zhang , Acta Metall. Sin. Engl. Lett. 20, 102(2007) |
[5] |
L. Xu, Z. Chu, C. Cui, Y. Gu, X. Sun , Acta Metall. Sin. 49, 863(2013). (in Chinese)
DOI URL |
[6] | Y. Gu, C. Cui, Y. Yuan, Z. Zhong , Acta Metall. Sin. 51, 1191(2015). (in Chinese) |
[7] | X. Li, C. Jia, Y. Zhang, S. Lv, Z. Jiang , Vacuum. 177, 109379(2020). https://doi.org/10.1016/j.vacuum.2020.109379 |
[8] | W.B. Han, K.F. Zhang, B. Wang, D.Z. Wu , Acta Metall. Sin. Engl. Lett. 20, 307(2007) |
[9] |
P. Liu, R. Zhang, Y. Yuan, C. Cui, Y. Zhou, X. Sun , J. Alloys Compd. 831, 154618(2020)
DOI URL |
[10] |
Y.F. Gu, T. Fukuda, C. Cui, H. Harada, A. Mitsuhashi, T. Yokokawa, J. Fujioka, Y. Koizumi, T. Kobayashi , Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 40, 3047(2009)
DOI URL |
[11] | Z. Zhong, Y. Gu, Y. Yuan, C. Cui, T. Yokokawa, H. Harada , Mater. Sci. Eng. A 552, 464 (2012) |
[12] |
C.Y. Cui, Y.F. Gu, D.H. Ping, H. Harada , Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 40, 282(2009)
DOI URL |
[13] |
Y. Yuan, Y. Gu, C. Cui, T. Osada, T. Yokokawa, H. Harada , Adv. Eng. Mater. 13, 296(2011)
DOI URL |
[14] | M.J. Sohrabi, H. Mirzadeh , Vacuum 169, 108875 (2019) |
[15] | M.J. Sohrabi, H. Mirzadeh, M. Rafiei , Vacuum 154, 235 (2018) |
[16] | B. Gao, L. Wang, T. Liang, Y. Liu, X. Song, J. Qu , Acta Metall. Sin. 52, 437(2016) .(in Chinese) |
[17] | F.J. Yin, R. Fu, F.L. Li, P. Di, G. Du, D. Feng , J. Iron Steel Res. 30, 32(2018) |
[18] | Z.N. Bi , J. Tron Steel Res. 23, 267(2011) |
[19] | J. Dong, L. Li, H. Li, M. Zhang, Z. Yao , Acta Metall. Sin. 51, 1207(2015). (in Chinese) |
[20] |
X. You, Y. Tan, Q. You, S. Shi, J. Li, F. Ye, X. Wei , J. Alloys Compd. 676, 202(2016)
DOI URL |
[21] | R. Fu, F. Li, F. Yin, D. Feng, Z. Tian, L. Chang , Mater. Sci. Eng. A 638, 152 (2015) |
[22] |
X. Zhuang, Y. Tan, L. Zhao, X. You, P. Li, C. Cui , J. Mater. Res. Technol. 9, 5422(2020)
DOI URL |
[23] |
L. Chang, H. Jin, W. Sun , J. Alloys Compd. 653, 266(2015)
DOI URL |
[24] | B. Ma, S.Y. Ren, X.H. Jiang , 8-9(1994). https://doi.org/10.13228/j.boyuan.issn1001-0777.1994.04.002.(in Chinese) |
( 马宾, 任舜禹, 江显泓. 镍基高温合金中η相研究, 物理测试, 1994; 4) | |
[25] | H. Li, X. Dong, L. Li , Trans. Mater. Heat Treat. 38, 61(2017) |
[26] | M.C. Flemings , New York 75, 219 (1974) |
[27] | P.G. Shewmon. Diffusion in Solids, Chap.(New York, 1963).https://doi.org/10.1007/978-3-319-48206-4. |
[28] | M. Hillert, Diffus. Thermodyn. Alloy(1984). http://ir.ustb.edu.cn/handle/400002224/10319 . |
[29] | K. Peng, Y.T. Yang, H.K. Zhang, M. Jin, G.J. Shao , Trans. Mater. Heat Treat. 31, 87(2010) |
[30] |
A. Paul, M.J.H. Van Dal, A.A. Kodentsov, F.J.J. Van Loo, Acta Mater. 52, 623(2004)
DOI URL |
[31] | G.D. Zhao, L.X. Yu, F. Qi, F. Liu, W.R. Sun, Z.Q. Hu , Acta Metall. Sin. Engl. Lett. 29, 518(2016) |
[32] | Y. Wang, Dissertation(Shanghai University, Shanghai, 2018). (in Chinese) |
[33] |
C. Haragather, S. Shang, Z. Liu , Acta Mater. 157, 126-141 (2018)
DOI URL |
[34] | F. Liu, Z.X. Wang, Z. Wang, J. Zhong, X.K. Wu, Z.J. Qin, Z.H. Li, L.M. Tan, L. Zhao, L.L. Zhu, L. Jiang, L. Huang, L.J. Zhang, Y. Liu , Mater Today Commun. 24, 101018(2020) |
[35] |
J. Wang, Y. Wang, N. Zhu, X.G. Lu , J. Phase Equilib. Diffus. 38, 37(2017)
DOI URL |
[1] | K. Yu, W.X. Li. HOMOGENIZATION TREATMENT OF Mg-Al-Zn (MM) MAGNESIUM ALLOY INGOTS [J]. Acta Metallurgica Sinica (English Letters), 2002, 15(6): 545-550 . |
[2] | WANG Anchuan;YANG Ke;FAN Cungan;LI Yiyi(Institute of Metal Research,Chinese Academy of Sciences Shenyang 110015,China) Manuscript received 4 May 1995. EFFECT OF TRACE ELEMENTS P AND Mn ON THE MICROSTRUCTURE AND HYDROGEN EMBRITTLEMENT OF AN Fe-Ni-Co BASED SUPERALLOY [J]. Acta Metallurgica Sinica (English Letters), 1996, 9(1): 32-36. |
[3] | LIU Wei;CUI Jianzhong(Northeastern University,Shenyang,ChinaManuscript received 10 November 1994). EFFECT OF HOMOGENIZATION TREATMENT UNDER AN ELECTRIC FIELD ON T_1 DISTRIBUTION AND MECHANICAL PROPERTIES OF 2091 Al-Li ALLOY [J]. Acta Metallurgica Sinica (English Letters), 1995, 8(2): 126-129. |
[4] | LIU Wei; CUI Jianzhong (Northeastern University, Shenyang, China Manuscript received 10 November,1994). INFLUENCE OF HOMOGENIZATION TREATMENT UNDER AN ELECTRIC FIELD ON DUCTILITY OF 2091 Al-Li ALLOY DURING HOT ROLLING [J]. Acta Metallurgica Sinica (English Letters), 1995, 8(1): 35-40. |
[5] | GUO Shouren LU Dezhong Institute of Metal Research,Academia Sinica,Shenyang,China. ON THE PRIMARY η-PHASE IN A HIGH-Ti Ni-Fe-Cr BASED SUPERALLOY [J]. Acta Metallurgica Sinica (English Letters), 1992, 5(3): 172-177. |
[6] | ZHANG Jishan TANG Yajun ZHANG Jinghua ZHANG Zhiya YU Yang LI Ying ao HU Zhuangqi Institute of Metal Research,Academia Sinica,Shenyang,China ZHANG Jishan Institute of Metal Research,Academia Sinica,Shenyang 110015,China. A Zr-RICH LOW MELTING POINT PHASE IN Ni_3Al ALLOY WITH Zr [J]. Acta Metallurgica Sinica (English Letters), 1990, 3(2): 149-151. |
[7] | NING Xiuzhen ZHANG Tianxiang TONG Yingjie ZHU Yaoxiao Institute of Metal Research,Academia Sinica,Shenyang,China [Originally published in ACTA METALL SIN(CHINESE EDN)25(3)1989 pp A196—A200, ZHU Yaoxiao,Professor,Institute of Metal Research,Academia Sinica,Shenyang,China. HOMOGENIZATION TREATMENT OF ALLOY GH169 [J]. Acta Metallurgica Sinica (English Letters), 1989, 2(6): 418-421. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||