Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (2): 325-338.DOI: 10.1007/s40195-023-01632-6
Previous Articles Next Articles
Lei Hu1, Liqin Zhang1,2(), Feng Hu1,2,3, Kuan Zheng1, Guohong Zhang3
Received:
2023-08-14
Revised:
2023-09-25
Accepted:
2023-09-28
Online:
2024-02-10
Published:
2024-02-27
Contact:
Liqin Zhang, Lei Hu, Liqin Zhang, Feng Hu, Kuan Zheng, Guohong Zhang. Effect of Central Multiphase Microstructure of Thick Plates on Work Hardening and Crack Propagation[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 325-338.
Add to citation manager EndNote|Ris|BibTeX
C | Mn | Si | S | P | Nb | Ti + V | Fe |
---|---|---|---|---|---|---|---|
0.161 | 1.5 | 0.37 | 0.005 | 0.009 | 0.05 | < 0.05 | Bal. |
Table 1 Chemical composition of test steel (wt%)
C | Mn | Si | S | P | Nb | Ti + V | Fe |
---|---|---|---|---|---|---|---|
0.161 | 1.5 | 0.37 | 0.005 | 0.009 | 0.05 | < 0.05 | Bal. |
Position | R0.2 (MPa) | Rm (MPa) | R0.2/Rm | Total elongation (%) | Uniform elongation (%) |
---|---|---|---|---|---|
1/4 T | 421 ± 14 | 560 ± 11 | 0.75 ± 0.01 | 33.1 ± 0.2 | 12.9 ± 0.2 |
Center | 425 ± 12 | 586 ± 10 | 0.72 ± 0.01 | 25.3 ± 0.1 | 8.6 ± 0.1 |
Table 2 Mechanical properties of the test steel
Position | R0.2 (MPa) | Rm (MPa) | R0.2/Rm | Total elongation (%) | Uniform elongation (%) |
---|---|---|---|---|---|
1/4 T | 421 ± 14 | 560 ± 11 | 0.75 ± 0.01 | 33.1 ± 0.2 | 12.9 ± 0.2 |
Center | 425 ± 12 | 586 ± 10 | 0.72 ± 0.01 | 25.3 ± 0.1 | 8.6 ± 0.1 |
Fig. 2 OM and SEM micrographs of the near fracture surfaces of the 1/4 T and center tensile samples of the test steel: a, c 1/4 T; b, d CSZ; e energy spectrum map of inclusion in d
Fig. 3 EBSD micrographs of 1/4 T and center samples of test steel. a, d IPF maps; b, e misorientation distribution maps; c, f KAM distribution maps; g statistical figure of large and small-angle grain boundary distribution; h KAM value distribution statistical maps. a, b, c 1/4 T; d, e, f CSZ
Position | Misorientation 2°-15° (%) | Misorientation > 15° (%) | Grain size (µm) | KAM value (°) |
---|---|---|---|---|
1/4 T | 22.6 | 77.4 | 10.73 | 0.24 |
Center | 48.2 | 51.8 | 9.22 | 0.49 |
Table 3 Statistics of test steel EBSD characterization results
Position | Misorientation 2°-15° (%) | Misorientation > 15° (%) | Grain size (µm) | KAM value (°) |
---|---|---|---|---|
1/4 T | 22.6 | 77.4 | 10.73 | 0.24 |
Center | 48.2 | 51.8 | 9.22 | 0.49 |
Fig. 4 EBSD band slope analysis results of CSZ in test steel: a band slope map; b bcc phase map that conforms to band slope data; c multiphase structure distribution map
Fig. 8 EBSD maps of the fracture longitudinal section voids of the center sample: a IPF map; b misorientation distribution map; c KAM distribution map
Position | Hollomon analysis | Modified C-J analysis | |||||
---|---|---|---|---|---|---|---|
Slope (n) | Slope (1-ns) | Transition strain (εt) | |||||
I | II | I | II | III | I-II | II-III | |
1/4 T | 0.32 | 0.14 | −3.69 | −7.89 | 0.098 | ||
Center | 0.33 | 0.12 | −3.05 | −6.81 | −13.54 | 0.080 | 0.102 |
Table 4 Slopes and transition strain points for each stage in the model position
Position | Hollomon analysis | Modified C-J analysis | |||||
---|---|---|---|---|---|---|---|
Slope (n) | Slope (1-ns) | Transition strain (εt) | |||||
I | II | I | II | III | I-II | II-III | |
1/4 T | 0.32 | 0.14 | −3.69 | −7.89 | 0.098 | ||
Center | 0.33 | 0.12 | −3.05 | −6.81 | −13.54 | 0.080 | 0.102 |
Fig. 13 a Distribution map of sub-grain boundaries; b Taylor factor map; c changes in misorientation along line 1 in b; d changes in misorientation along line 2 in b
[1] |
J. Hu, L.X. Du, Y. Dong, Q.W. Meng, R.D.K. Misra, Mater. Charact. 152, 21 (2019)
DOI URL |
[2] |
X.J. Sun, S.F. Yuan, Z.J. Xie, L.L. Dong, C.J. Shang, R.D.K. Misra, Mater. Sci. Eng. A 689, 212 (2017)
DOI URL |
[3] |
J. Hu, L.X. Du, H. Xie, X.H. Gao, R.D.K. Misra, Mater. Sci. Eng. A 607, 122 (2014)
DOI URL |
[4] |
D.S. Liu, B.G. Cheng, Y.Y. Chen, Metall. Mater. Trans. A 44, 440 (2012)
DOI URL |
[5] |
B.S. Xie, Q.W. Cai, Y. Yun, G.S. Li, Z. Ning, Mater. Sci. Eng. A 680, 454 (2017)
DOI URL |
[6] |
Z.J. Xie, Q. Li, Z.P. Liu, W.H. Zhou, X.L. Wang, Q. Yu, D.H. Xiao, C.J. Shang, Mater. Lett. 323, 132525 (2022)
DOI URL |
[7] |
F.J. Guo, W. Liu, X.L. Wang, R.D.K. Misra, C.J. Shang, Metals 9, 749 (2019)
DOI URL |
[8] |
R. Feng, S. Li, X. Zhu, Q. Ao, J. Alloys Compd. 646, 787 (2015)
DOI URL |
[9] | F.J. Guo, X.L. Wang, W.L. Liu, C.J. Shang, R.D.K. Misra, H. Wang, T. Zhao, C. Peng, Steel Res. Int. 89, 12 (2018) |
[10] |
R.S. Varanasi, M. Koyama, Y. Shibayama, E. Akiyama, Mater. Sci. Eng. A 857, 144021 (2022)
DOI URL |
[11] |
S.M. Hasan, A. Mandal, S.B. Singh, D. Chakrabarti, Mater. Sci. Eng. A 751, 142 (2019)
DOI URL |
[12] |
X.Y. Tu, X.B. Shi, W. Yan, C.S. Li, Q.Q. Shi, Y.Y. Shan, K. Yang, Mater. Sci. Eng. A 831, 142230 (2022)
DOI URL |
[13] |
S.C. Li, C.Y. Guo, L.L. Hao, Y.L. Kang, Y.G. An, Mater. Sci. Eng. A 759, 624 (2019)
DOI URL |
[14] |
B. Gao, Z.L. Tan, Z.N. Liu, G.H. Gao, M. Zhang, G.Z. Zhang, B.Z. Bai, Eng. Failure Anal. 100, 485 (2019)
DOI URL |
[15] |
J.J. Liu, D.H. Liu, X.R. Zuo, L.H. Liu, Q.J. Yan, Metals 12, 21 (2021)
DOI URL |
[16] |
K. Chen, H.B. Li, Z.H. Jiang, F.B. Liu, C.P. Kang, X.D. Ma, B.J. Zhao, J. Mater. Sci. Technol. 72, 81 (2021)
DOI |
[17] |
C.H. Song, H. Yu, L.L. Li, T. Zhou, J. Lu, X.H. Liu, Mater. Sci. Eng. A 670, 326 (2016)
DOI URL |
[18] |
R. Petrov, L. Kestens, A. Wasilkowska, Y. Houbaert, Mater. Sci. Eng. A 447, 285 (2007)
DOI URL |
[19] |
M.J. Santofimia, R.H. Petrov, L. Zhao, J. Sietsma, Mater. Charact. 92, 91 (2014)
DOI URL |
[20] |
M.S. Baek, K.S. Kim, T.W. Park, J. Ham, K.A. Lee, Mater. Sci. Eng. A 785, 139375 (2020)
DOI URL |
[21] |
D.Q. Zhang, G. Liu, K. Zhang, X.J. Sun, X.K. Liang, Q.L. Yong, Mater. Sci. Eng. A 824, 141813 (2021)
DOI URL |
[22] |
S.B. Zhou, C.Y. Hu, F. Hu, L. Cheng, O. Isayev, S. Yershov, H.J. Xiang, K.M. Wu, Mater. Sci. Eng. A 846, 143175 (2022)
DOI URL |
[23] |
J.L. Zhao, F.C. Zhang, Mater. Sci. Eng. A 771, 138637 (2020)
DOI URL |
[24] |
Y. Yang, H.M. Wang, C. Wang, L.W. Yang, Steel Res. Int. 91, 1900583 (2020)
DOI URL |
[25] |
D.H. Kim, Y. Seong, J.G. Kim, J. Lee, M.H. Seo, H. Hwang, H.S. Kim, Mater. Sci. Eng. A 794, 139965 (2020)
DOI URL |
[26] |
A. Das, M. Ghosh, S. Tarafder, S. Sivaprasad, D. Chakrabarti, Mater. Sci. Eng. A 680, 249 (2017)
DOI URL |
[27] |
C.J. Tang, C.J. Shang, S.L. Liu, H.L. Guan, R.D.K. Misra, Y.B. Chen, Mater. Sci. Eng. A 731, 173 (2018)
DOI URL |
[28] |
D. Song, G.W. Wang, F.L. Yang, H.D. Chen, N.N. Liang, H. Ma, J.H. Jiang, X.L. Ma, J. Mater. Res. Technol. 9, 12281 (2020)
DOI URL |
[29] |
T.T. He, L. Wang, F. Hu, W. Zhou, Z.C. Zhang, K.M. Wu, J. Mater. Res. Technol. 22, 2690 (2023)
DOI URL |
[30] |
X.Y. Tu, X.B. Shi, Y.Y. Shan, W. Yan, Q.Q. Shi, Y.F. Li, C.S. Li, K. Yang, Mater. Sci. Eng. A 793, 139889 (2020)
DOI URL |
[31] |
H. Mirzadeh, M. Alibeyki, M. Najafi, Metall. Mater. Trans. A 48, 4565 (2017)
DOI |
[32] |
D. Das, P.P. Chattopadhyay, J. Mater. Sci. 44, 2957 (2009)
DOI URL |
[33] |
N. Saeidi, F. Ashrafizadeh, B. Niroumand, F. Barlat, Mater. Des. 87, 130 (2015)
DOI URL |
[34] | N. Wang, Y.N. Chen, G. Wu, Z. Zhang, Z.C. Wu, J.H. Luo, Mater. Sci. Eng. A 800, 140837 (2021) |
[35] |
A. Das, S. Tarafder, S. Sivaprasad, D. Chakrabarti, Mater. Sci. Eng. A 754, 348 (2019)
DOI URL |
[36] |
M. Masoumi, H.F.G. Abreu, L.F.G. Herculano, J.M. Pardal, S.S.M. Tavares, M.J.G. Silva, Eng. Fail. Anal. 104, 379 (2019)
DOI URL |
[37] |
Y.N. Chen, Z.C. Wu, G. Wu, N. Wang, Q.Y. Zhao, J.H. Luo, Mater. Sci. Eng. A 802, 140657 (2021)
DOI URL |
[38] |
O.L, García, R. Petrov, L.A.I. Kestens, Mater. Sci. Eng. A 527, 4202 (2010)
DOI URL |
[39] |
W. Yan, Y.Y. Shan, K. Yang, Metall. Mater. Trans. A 38, 1211 (2007)
DOI URL |
[40] | W.T. Zh u, J.J. Cui, Z.Y. Chen, Y. Zhao, L.Q. Chen, Acta Metall. Sin. -Engl. Lett. 35, 527 (2021) |
[1] | Chao Xia, Kexin Zhao, Xin Zhou, Yuqi He, Panpan Gao, Hengxin Zhang, Guangrui Gao, Fengying Zhang, Hua Tan. Effect of Microstructural Characteristics on Fracture Toughness in Direct Energy Deposited Novel Ti-6Al-4V-1Mo Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 119-131. |
[2] | Fei Qiang, Wen Wang, Ke Qiao, Pai Peng, Ting Zhang, Xiao-Hu Guan, Jun Cai, Qiang Meng, Hua-Xia Zhao, Kuai-She Wang. Microstructure and Mechanical Properties in Friction Stir Welded Thick Al-Zn-Mg-Cu Alloy Plate [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1329-1342. |
[3] | J.X. Tang, L. Shi, C.S. Wu, M.X. Wu, S. Gao. Microstructure and Mechanical Properties of Dissimilar Double-Side Friction Stir Welds Between Medium-Thick 6061-T6 Aluminum and Pure Copper Plates [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(12): 2027-2046. |
[4] | Keli Liu, Junsheng Wang, Bing Wang, Pengcheng Mao, Yanhong Yang, Yizhou Zhou. Quantifying the Influences of Carbides and Porosities on the Fatigue Crack Evolution of a Ni-Based Single-Crystal Superalloy using X-ray Tomography [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 133-145. |
[5] | Muhammad Rizwan, Junxia Lu, Fei Chen, Ruxia Chai, Rafi Ullah, Yuefei Zhang, Ze Zhang. Microstructure Evolution and Mechanical Behavior of Laser Melting Deposited TA15 Alloy at 500 °C under In-Situ Tension in SEM [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1201-1212. |
[6] | Ke Xu, Tao Fang, Longfei Zhao, Haichao Cui, Fenggui Lu. Effect of Trace Element on Microstructure and Fracture Toughness of Weld Metal [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 425-436. |
[7] | Rong-Hua Li, Peng Zhang, Zhe-Feng Zhang. Torsional Fatigue Cracking and Fracture Behaviors of Cold-Drawn Copper: Effects of Microstructure and Axial Stress [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(12): 1521-1529. |
[8] | Zhong-Yuan Feng, Xin-Jie Di, Shi-Pin Wu, Dong-Po Wang, Xiao-Qian Liu. Comparison of Microstructure and Residual Stress Between TIG and MAG Welding Using Low Transformation Temperature Welding Filler [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(3): 263-272. |
[9] | Noritake Hiyoshi. Crack Initiation and Propagation Evaluation for Sn-5Sb Solder Under Low-Cycle Fatigue [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(9): 851-856. |
[10] | Meng Wang, Zhen-Yu Liu, Cheng-Gang Li. Correlations of Ni Contents, Formation of Reversed Austenite and Toughness for Ni-Containing Cryogenic Steels [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(3): 238-237. |
[11] | Yun-Long Xue, Shuang-Ming Li, Hong Zhong, Lai-Ping Li, Heng-Zhi Fu. Microstructure Characterization and Fracture Toughness of Laves Phase-Based Cr-Nb-Ti Alloys [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(4): 514-520. |
[12] | Lasko Galina, Weber Ulrich, Schmauder Siegfried. Finite Element Simulations of Crack Propagation in Al2O3/6061Al Composites [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(5): 853-861. |
[13] | Bing JIANG, Yusong LIU,Meicheng LI. In-situ Observation of Crack Growth and Domain Switching Around Vickers Indentation on BaTiO3 Single Crystal Under Sustained Electric Field [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(6): 772-776. |
[14] | Masood Shah, Catherine Mabru, Farhad Rezai-Aria, Ines Souki,Riffat Asim Pasha. An estimation of stress intensity factor in a clamped SE(T) specimen through numerical simulation and experimental verification: case of FCGR of AISI H11 tool steel [J]. Acta Metallurgica Sinica (English Letters), 2012, 25(4): 307-319. |
[15] | Author X.S. Xie, Z.C. Xu and J.X. Dong High Temperature Materials Research Laboratory,University of Science and Technology Beijing,Beijing 100083, ChinaManuscript received 18 October 1998. HIGH TEMPERATURE CRACK PROPAGATION AND FRACTUREOF SUPERALLOYS [J]. Acta Metallurgica Sinica (English Letters), 1999, 12(1): 54-61. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||