Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (7): 1164-1174.DOI: 10.1007/s40195-022-01372-z
Previous Articles Next Articles
Yong Zhao, Haijun Su(), Guangrao Fan, Chenglin Liu, Taiwen Huang, Wenchao Yang, Jun Zhang, Lin Liu, Hengzhi Fu
Received:
2021-09-19
Revised:
2021-10-25
Accepted:
2021-10-25
Online:
2022-07-10
Published:
2022-01-11
Contact:
Haijun Su
About author:
Haijun Su, shjnpu@nwpu.edu.cnYong Zhao, Haijun Su, Guangrao Fan, Chenglin Liu, Taiwen Huang, Wenchao Yang, Jun Zhang, Lin Liu, Hengzhi Fu. Tailoring Microstructure and Microsegregation in a Directionally Solidified Ni-Based SX Superalloy by a Weak Transverse Static Magnetic Field[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1164-1174.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Schematic diagram of DS experiment under a WTSMF: a experimental apparatus, b illustration of the relative position of the mushy zone to the WTSMF, c schematic illustration of the sample
Fig. 2 Transverse microstructures of Ni-based DD3 SX superalloy under different WTSMF intensities (G = 70 K/cm, R = 30 μm/s): a 0 T, b 0.1 T, c 0.3 T, d 0.5 T
Physical parameters | Magnitude |
---|---|
Thermoelectric power of solid (SS, V K-1) | - 10.95 × 10-6 |
Thermoelectric power of liquid (SL, V K-1) | - 16 × 10-6 |
Electrical conductivity of solid (σS, Ω-1 m-1) | 5.9 × 106 |
Electrical conductivity of liquid (σL, Ω-1 m-1) | 6.4 × 106 |
Kinematic viscosity (υ, m2 s-1) | 1.10 × 10-7 |
Density of liquid alloy (ρ, kg m-3) | 7.83 × 103 |
Table 1 Physical properties of Ni-based SX superalloy applied in the numerical simulation [26,27,28]
Physical parameters | Magnitude |
---|---|
Thermoelectric power of solid (SS, V K-1) | - 10.95 × 10-6 |
Thermoelectric power of liquid (SL, V K-1) | - 16 × 10-6 |
Electrical conductivity of solid (σS, Ω-1 m-1) | 5.9 × 106 |
Electrical conductivity of liquid (σL, Ω-1 m-1) | 6.4 × 106 |
Kinematic viscosity (υ, m2 s-1) | 1.10 × 10-7 |
Density of liquid alloy (ρ, kg m-3) | 7.83 × 103 |
Fig. 11 3D geometry model applied in the numerical simulation of the TEMC effect near the S/L interface a and around the dendrite b in the DD3 superalloy: (a1, b1) geometry; (a2, b2) mesh
Fig. 12 Distribution and intensity of the TEMC near the S/L interface in DD3 SX superalloy under different WTSMF intensities: a 0 T, b 0.1 T, c 0.3 T, d 0.5 T (the flow direction is shown by red arrows, and the magnitude is the colored slice)
Fig. 13 Distribution and intensity of the TEMC around the dendrite in DD3 SX superalloy under different WTSMF intensities: a 0 T, b 0.1 T, c 0.3 T, d 0.5 T (the flow direction is shown by red arrows, and the magnitude is the colored slice)
Fig. 14 Maximum of the TEMC velocity in DD3 SX superalloy under various WTSMF intensities: a TEMC velocity near the S/L interface, b TEMC velocity around the dendrite
[1] |
N. D’Souza, P.A. Jennings, X.L. Yang, H.B. Dong, P.D. Lee, M. McLean, Metall. Mater. Trans. B 36, 657 (2005)
DOI URL |
[2] |
H.B. Long, S.C. Mao, Y.N. Liu, Z. Zhang, X.D. Han, J. Alloys Compd. 743, 203 (2018)
DOI URL |
[3] |
C.J. Li, G. Guo, Z.J. Yuan, W.D. Xuan, Z.M. Ren, Y.B. Zhong, J. Alloys Compd. 720, 272 (2017)
DOI URL |
[4] |
D.X. Ma, A. Bührig-Polaczek, Metall. Mater. Trans. B. 40, 738 (2009)
DOI URL |
[5] | J. Zhang, L. Wang, D. Wang, G. Xie, Y.Z. Lu, J. Shen, L.H. Lou, Acta Metall. Sin. 55, 1077 (2019) |
[6] | W.D. Xuan, H. Liu, C.J. Li, Z.M. Ren, Y.B. Zhong, X. Li, G.H. Cao, Metall. Mater. Trans. B 40, 828 (2016) |
[7] | M.M. Franke, R.M. Hilbinger, A. Lohmüller, R.F. Singer, J. Mater. Proc. Technol. 213, 2081 (2013) |
[8] |
Y.J. Liang, A. Li, X. Cheng, X.T. Pang, H.M. Wang, J. Alloys Compd. 688, 133 (2016)
DOI URL |
[9] | M.V. Nathal, Metal. Mater. Trans. A 18, 1961 (1987) |
[10] |
F. Pyczak, B. Devrient, F.C. Neuner, H. Mughrabi, Acta Mater. 53, 3879 (2005)
DOI URL |
[11] |
L. Liu, T.W. Huang, J. Zhang, H.Z. Fu, Mater. Lett. 61, 227 (2007)
DOI URL |
[12] |
G.E. Fuchs, Mater. Sci. Eng. A 300,52 (2001)
DOI URL |
[13] |
M. Konter, M. Thumann, J. Mater. Process. Technol. 117, 386 (2001)
DOI URL |
[14] |
C.L. Brundidge, D. Vandrasek, B. Wang, T.M. Pollock, Metall. Mater. Trans. A 43, 965 (2012)
DOI URL |
[15] |
A.J. Elliott, S. Tin, W.T. King, S.C. Huang, M. F.X. Gigliotti, T.M. Pollock, Metall. Mater. Trans. A 35, 3221 (2004)
DOI URL |
[16] | M. Konter, E. Kats, N. Hofmann, Superalloys, TMS (The Minerals, Metals and Materials Society). Pennsylvania 2000, 189-200 (2000) |
[17] |
S.D. Hu, L. Hou, K. Wang, Z.M. Liao, W. Zhu, A.H. Yi, W.F. Li, Y. Fautrelle, X. Li, J. Mater. Sci. Technol. 76, 207 (2021)
DOI URL |
[18] |
H. Yasuda, I. Ohnaka, S. Fujimoto, N. Takezawa, A. Tsuchiyama, T. Nakan, Scr. Mater. 54, 527 (2006)
DOI URL |
[19] | Y. Hou, Z.Q. Zhang, W.D. Xuan, J. Wang, J.B. Yu, Z.M. Ren, Acta Metall. Sin. -Engl. Lett. 31, 681 (2018) |
[20] | K.L. Zhang, Y.J. Li, Y.S. Yang, Acta Metall. Sin. -Engl. Lett. 33, 1442 (2020) |
[21] |
X. Li, A. Gagnoud, Y. Fautrelle, R. Moreau, D.F. Du, Z.M. Ren, Metall. Mater. Trans. A 47, 2952 (2016)
DOI URL |
[22] |
X.T. Yuan, T. Zhou, W.L. Ren, J.C. Peng, T.X. Zheng, L. Hou, J.B. Yu, Z.M. Ren, P.K. Liaw, Y.B. Zhong, J. Mater. Sci. Technol. 62, 52 (2021)
DOI URL |
[23] |
X. Li, Y. Fautrelle, A. Gagnoud, D.F. Du, J. Wang, Z.M. Ren, H. Nguyen-Thi, N. Mangelinck-Noel, Acta Mater. 64, 367 (2014)
DOI URL |
[24] |
I. Kaldre, Y. Fautrelle, J. Etay, A. Bojarevics, L. Buligins, J. Alloys Compd. 571, 50 (2013)
DOI URL |
[25] |
X. Li, J. Wang, J. Zhang, Y.F. Han, X. Li, Mater. 8, 3428 (2015)
DOI URL |
[26] |
W.D. Xuan, H. Liu, J. Lan, C.J. Li, Y.B. Zhong, X. Li, G.H. Cao, Z.M. Ren, Metall. Trans. B 47, 3231 (2016)
DOI URL |
[27] |
Y.J. Li, Y.F. Teng, X.H. Feng, Y.S. Yang, J. Mater. Sci. Technol. 33, 105 (2017)
DOI URL |
[28] |
X. Li, Y. Fautrelle, Z.M. Ren, Acta Mater. 55, 3803 (2007)
DOI URL |
[29] |
X. Li, Z.M. Ren, J. Wang, Y.F. Han, B.D. Sun, Mater. Lett. 67, 205 (2012)
DOI URL |
[30] |
G. Pottlacher, H. Hosaeus, B. Wilthan, E. Kaschnitb, A. Seifter, Thermochim. Acta 382, 255 (2002)
DOI URL |
[31] | H. Carreon, Nondestruct. Test Eval. 24, 233 (2009) |
[32] | B.C. Dupree, J.E. Enderby, R.J. Newport, J.B. Van Zytveld, Inst. Phys. Conf. Ser. 30, 337 (1977) |
[33] |
S. Steinbach, L. Ratke, Metall. Mater. Trans. A 38, 1388 (2007)
DOI URL |
[34] |
C.J. Paradies, R.N. Smith, M.E. Glicksman, Metall. Mater. Trans. A 28, 875 (1997)
DOI URL |
[35] | P.A. Curreri, J.E. Lee, D.M. Stefanescu, Metall. Trans. Trans. A 19, 2671 (1988) |
[36] |
P. Lehamann, R. Moreau, D. Camel, R. Bolcato, J. Cryst. Growth 183, 690 (1998)
DOI URL |
[37] |
W.D. Xuan, J. Lan, H. Liu, C.J. Li, X. Li, Z.M. Ren, Metall. Mater. Trans. A 48, 3804 (2017)
DOI URL |
[38] |
X.P. Guo, H.Z. Fu, J.H. Sun, Metall. Trans. A 28, 997 (1997)
DOI URL |
[39] | J.M. Xiao, Alloy Phase and Its Transformation (The Chinese Metallurgical Publishing House, Beijing, 1987), pp. 233-235 |
[40] |
F. Wang, D. Ma, J. Zhang, L. Liu, J. Hong, S. Bogner, A. Bührig-Polaczek, J. Cryst. Growth 389, 47 (2014)
DOI URL |
[41] |
L. Abou-Khalil, G. Salloum-Abou-Jaoude, G. Reinhart, C. Pickmann, G. Zimmermann, H. Nguyen-Thi, Acta Mater. 110, 44 (2016)
DOI URL |
[1] | Xing-Jiang Hua, Ping Hu, Hai-Rui Xing, Jia-Yu Han, Song-Wei Ge, Shi-Lei Li, Chao-Jun He, Kuai-She Wang, Chun-Juan Cui. Development and Property Tuning of Refractory High-Entropy Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1231-1265. |
[2] | Peng Peng, Shengyuan Li, Weiqi Chen, Yuanli Xu, Xudong Zhang, Zhikun Ma, Jiatai Wang. Phase Selection and Microhardness of Directionally Solidified AlCoCrFeNi2.1 Eutectic High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1281-1290. |
[3] | Haoyang Yu, Wei Fang, Jinfei Zhang, Jiaxin Huang, Jiaohui Yan, Xin Zhang, Juan Wang, Jianhang Feng, Fuxing Yin. Microstructural Evolution of Co35Cr25Fe30Ni10 TRIP Complex Concentrated Alloy with the Addition of Minor Cu and Its Effect on Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1291-1300. |
[4] | Bao-Jia Hu, Qin-Yuan Zheng, Chun-Ni Jia, Peng Liu, Yi-Kun Luan, Cheng-Wu Zheng, Dian-Zhong Li. Improvement of Mechanical Properties of a Medium-Mn TRIP Steel by Precursor Microstructure Control [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1068-1078. |
[5] | Pengcheng Zhu, Lin Zhang, Zhaochang Li, K. H. Lo, Jianfeng Wang, Yufeng Sun, Shaokang Guan. Microstructure and Mechanical Properties of Friction Stir Welded 1.5 GPa Martensitic High-Strength Steel Plates [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1079-1089. |
[6] | Chao Liu, Yilun Li, Xuequn Cheng, Xiaogang Li. Recent Advances on the Corrosion Resistance of Low-Density Steel: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1055-1067. |
[7] | Yu Chen, Jian-chao Pang, Shou-xin Li, Zhe-feng Zhang. High-Temperature Oxidation Behavior and Related Mechanism of RuT400 Vermicular Graphite Iron [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1117-1130. |
[8] | Zhenye Chen, Zhangguo Lin, Jianjun Qi, Yang Feng, Liqing Chen, Guodong Wang. Microstructures and Mechanical Properties of a New Multi-functional 460 MPa Grade Construction Structural Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1131-1142. |
[9] | Ke Zhao, Zhongying Duan, Jinling Liu, Guozheng Kang, Linan An. Strengthening Mechanisms of 15 vol.% Al2O3 Nanoparticles Reinforced Aluminum Matrix Nanocomposite Fabricated by High Energy Ball Milling and Vacuum Hot Pressing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 915-921. |
[10] | Junlei Zhang, Han Liu, Xiang Chen, Qin Zou, Guangsheng Huang, Bin Jiang, Aitao Tang, Fusheng Pan. Deformation Characterization, Twinning Behavior and Mechanical Properties of Dissimilar Friction-Stir-Welded AM60/AZ31 Alloys Joint During the Three-Point Bending [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 727-744. |
[11] | Xicai Luo, Haolin Liu, Limei Kang, Jielin Lin, Datong Zhang, Dongyang Li, Daolun Chen. Achieving Superior Superplasticity in a Mg-6Al-Zn Plate via Multi-pass Submerged Friction Stir Processing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 757-762. |
[12] | Peng Gong, Ying-Ying Zuo, Shu-De Ji, De-Jun Yan, Deng-Chang Li, Zhen Shang. Non-keyhole Friction Stir Welding for 6061-T6 Aluminum Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 763-772. |
[13] | Yu-Qing Mao, Ping Yang, Li-Ming Ke, Yang Xu, Yu-Hua Chen. Microstructure Evolution and Recrystallization Behavior of Friction Stir Welded Thick Al-Mg-Zn-Cu alloys: Influence of Pin Centerline Deviation [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 745-756. |
[14] | Zhengran Liu, Xi Zhao, Kai Chen, Siqi Wang, Xianwei Ren, Zhimin Zhang, Yong Xue. Microstructural Evolution and Anisotropic Weakening Mechanism of ZK60 Magnesium Alloy Processed by Isothermal Repetitive Upsetting Extrusion [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 839-852. |
[15] | Minmin Li, Zhe Qin, Yan Yang, Xiaoming Xiong, Gang Zhou, Xiaofei Cui, Bin Jiang, Xiaodong Peng, Fusheng Pan. Microstructure and Corrosion Properties of Duplex-Structured Extruded Mg-6Li-4Zn-xMn Alloys [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 867-878. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||