Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (9): 1245-1254.DOI: 10.1007/s40195-021-01195-4
Previous Articles Next Articles
Jinyang Liu1, Jian Chen1,2,3(), Li Zhou2, Bingyao Liu3, Yang Lu1, Shanghua Wu1, Xin Deng1(
), Zhongliang Lu4,5, Zhipeng Xie6, Wei Liu2, Jianye Liu7, Zhi Qu8
Received:
2020-10-14
Revised:
2020-12-07
Accepted:
2020-12-08
Online:
2021-09-10
Published:
2021-02-04
Contact:
Jian Chen,Xin Deng
About author:
Xin Deng, dengxin@gdut.edu.cnJinyang Liu, Jian Chen, Li Zhou, Bingyao Liu, Yang Lu, Shanghua Wu, Xin Deng, Zhongliang Lu, Zhipeng Xie, Wei Liu, Jianye Liu, Zhi Qu. Role of Co Content on Densification and Microstructure of WC-Co Cemented Carbides Prepared by Selective Laser Melting[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1245-1254.
Add to citation manager EndNote|Ris|BibTeX
Process parameter | WC-12Co | WC-20Co | WC-32Co |
---|---|---|---|
Laser power (J/s) | 289 | 260 | 212 |
Laser spot size (µm) | 100 | 100 | 100 |
Scan speed (mm/s) | 350 | 350 | 350 |
Scan line spacing (µm) | 50 | 50 | 50 |
Powder layer thickness (µm) | 30 | 30 | 30 |
Table 1 Three sets of SLM process parameters optimized specifically for three carbides
Process parameter | WC-12Co | WC-20Co | WC-32Co |
---|---|---|---|
Laser power (J/s) | 289 | 260 | 212 |
Laser spot size (µm) | 100 | 100 | 100 |
Scan speed (mm/s) | 350 | 350 | 350 |
Scan line spacing (µm) | 50 | 50 | 50 |
Powder layer thickness (µm) | 30 | 30 | 30 |
Fig. 2 Schematic illustration of SLM process. Both the vertical (parallel to the laser beam) and horizontal (perpendicular to the laser beam) cross sections were used for microstructural analysis
Property/SLM process parameters | Value |
---|---|
Laser absorptivity of the powder (%) | 0.69 |
Density of WC-12Co (g/cm3) | 14.38 |
Density of WC-20Co (g/cm3) | 13.62 |
Density of WC-32Co (g/cm3) | 12.62 |
Thermal conductivity of WC-12Co (W/(m K)) | 117.24 |
Thermal conductivity of WC-20Co (W/(m K)) | 102 |
Thermal conductivity of WC-32Co (W/(m K)) | 77.64 |
Thermal capacity of WC-12Co (J/(kg K)) | 272.8 |
Thermal capacity of WC-20Co (J/(kg K)) | 288 |
Thermal capacity of WC-32Co (J/(kg K)) | 310.8 |
Ambient temperature (K) | 300 |
Liquidus temperature (K) | 1647 |
Laser spot diameter (µm) | 150 |
Powder layer thickness (µm) | 30 |
Table 2 Properties of feedstock WC-20Co granule and SLM process parameters for FEM
Property/SLM process parameters | Value |
---|---|
Laser absorptivity of the powder (%) | 0.69 |
Density of WC-12Co (g/cm3) | 14.38 |
Density of WC-20Co (g/cm3) | 13.62 |
Density of WC-32Co (g/cm3) | 12.62 |
Thermal conductivity of WC-12Co (W/(m K)) | 117.24 |
Thermal conductivity of WC-20Co (W/(m K)) | 102 |
Thermal conductivity of WC-32Co (W/(m K)) | 77.64 |
Thermal capacity of WC-12Co (J/(kg K)) | 272.8 |
Thermal capacity of WC-20Co (J/(kg K)) | 288 |
Thermal capacity of WC-32Co (J/(kg K)) | 310.8 |
Ambient temperature (K) | 300 |
Liquidus temperature (K) | 1647 |
Laser spot diameter (µm) | 150 |
Powder layer thickness (µm) | 30 |
Fig. 5 Backscattered electron microstructure of horizontal and vertical cross sections, a horizontal cross section of WC-12Co, b vertical cross section of WC-12Co, c horizontal cross section of WC-20Co, d vertical cross section of WC-20Co, e horizontal cross section of WC-32Co, f vertical cross section of WC-32Co
Fig. 6 WC grain size distribution of SLM processed WC-12Co, WC-20Co, and WC-32Co cemented carbides, a horizontal cross section, b vertical cross section
Fig. 9 FEM simulation results: a three-dimensional finite element model, b the horizontal/vertical temperature distribution profile of liquid phase sintering pool during SLM process, c temperature contour plots of (b), sintering temperature/heating-cooling rate versus time at the center of liquid phase sintering pool surface for d WC-12Co, e WC-20Co, f WC-32Co
[1] | M. Antonov, R. Veinthal, D.L. Yung, D. Katušin, I. Hussainova, Wear332-333, 971 (2015) |
[2] | Z. Ke, Y. Zheng, G. Zhang, Q. Ding, X. Zhu, Ceram. Int. 45, 17 (2019) |
[3] |
J. García, V.C. Ciprés, A. Blomqvist, K. Bartek, Int. J. Refract. Met. Hard Mater. 80, 40 (2019)
DOI URL |
[4] |
K. Liu, Z. Wang, Z. Yin, L. Cao, J.T. Yuan, Ceram. Int. 44, 18711 (2018)
DOI URL |
[5] |
M.A. Yousfi, S. Norgren, H.O. Andrén, L.K.L. Falk, Mater. Charact. 144, 48 (2018)
DOI URL |
[6] |
S. Guo, W. Yan, J. Yi, S. Wang, Y. Ye, Ceram. Int. 46, 17243 (2020)
DOI URL |
[7] | M.H. Alfredo, B.R. Gabriel, H.R. Eric-Noé, M.L. Miguel, Z.T. Martin, Int. J. Refract. Met. Hard Mater. 107, 676 (2016) |
[8] | D. Tkalich, A. Kane, A. Saai, V.A. Yastrebov, M. Hokka, V.T. Kuokkala, M. Bengtsson, F. Anna, C. Oelgardt, C.C. Li, Wear 386-387, 106(2017) |
[9] | Z. Hu, Y. Zhao, K. Guan, Z. Wang, Z. Ma, Addit. Manuf. 36, 101579 (2020) |
[10] |
W.H. Yu, S.L. Sing, C.K. Chua, C.N. Kuo, X.L. Tian, Prog. Mater. Sci. 104, 330 (2019)
DOI |
[11] |
B. Alberto, B. Luana, E. Marco, C. Valerio, V. Francesco, G. Paolo, Acta Astronaut. 159, 377 (2019)
DOI URL |
[12] | N. Kumar, H. Kumar, J.S. Khurmi, Proc. Tech. 23, 352 (2016) |
[13] | E. Uhlmann, A. Bergmann, W. Gridin, Proc. CIRP 35, 8 (2015) |
[14] |
A. Domashenkov, A. Borbély, I. Smurov, Mater. Manuf. Process. 32, 93 (2017)
DOI URL |
[15] |
S. Grigoriev, T. Tarasova, A. Gusarov, R. Khmyrov, S. Egorov, Mater. 12, 3425 (2019)
DOI URL |
[16] |
S. Kumar, A. Czekanski, Rapid Prototyping J. 23, 1202 (2017)
DOI URL |
[17] |
R.S. Khmyrov, V.A. Safronov, A.V. Gusarov, Phys. Proc. 83, 874 (2016)
DOI URL |
[18] |
C.W. Li, K.C. Chang, A.C. Yeh, J.W. Yeh, S.J. Lin, Int. J. Refract. Met. Hard Mater. 75, 225 (2018)
DOI URL |
[19] |
A. Fortunate, G. Valli, E. Liverani, A. Ascari, Lasers Manuf. Mater. Process. 6, 247 (2019)
DOI URL |
[20] |
J.M. Marshall, M. Giraudel, Int. J. Refract. Met. Hard Mater. 49, 57 (2015)
DOI URL |
[21] | R.S. Khmyrov, A.P. Shevchukov, A.V. Gusarov, T.V. Tarasova, S.N. Grigoriev, Mech. Ind. 18, 714 (2017) |
[22] |
Y. Li, D. Gu, Mater. Des. 63, 856 (2014)
DOI URL |
[23] |
W. Huang, Y. Zhang, J. Manuf. Process. 42, 139 (2019)
DOI URL |
[24] |
M. Guo, D. Gu, L. Xi, L. Du, H. Zhang, J. Zhang, Int. J. Refract. Met. Hard Mater. 79, 37 (2019)
DOI URL |
[25] | S.L. Campanelli, N. Contuzzi, P. Posa, A. Angelastro, Materials 12, 2397 (2019) |
[26] |
C.L. Cramer, T.G. Aguirre, N.R. Wieber, R.A. Lowden, A.M. Elliott, J. Refract. Met. Hard Mater. 87, 105137 (2019)
DOI URL |
[27] |
C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, S.L. Sing, Phys. Rev. Appl. 2, 041101 (2015)
DOI URL |
[28] |
R.M. Kakhramanov, A.G. Knyazeva, L.N. Rabinskiy, Y.O. Solyaev, High Temp. 55, 731 (2017)
DOI URL |
[29] | L. Wojnar, K.J. Kurzydlowski, J. Szala, in Metallography and Microstructures. ed. by G.F. Voort (American Society for Metals, Russell Township, 2004), p. 403s |
[30] |
X. Wang, D. Zhou, P. Xu, Ceram. Int. 45, 23320 (2019)
DOI URL |
[1] | Mehran Dadkhah, Mohammad Hossein Mosallanejad, Luca Iuliano, Abdollah Saboori. A Comprehensive Overview on the Latest Progress in the Additive Manufacturing of Metal Matrix Composites: Potential, Challenges, and Feasible Solutions [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1173-1200. |
[2] | Min Wang, Yuanjie Zhang, Bo Song, Qingsong Wei, Yusheng Shi. Wear Performance and Corrosion Behavior of Nano-SiCp-Reinforced AlSi7Mg Composite Prepared by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1213-1222. |
[3] | Jian-Bin Zhan, Yan-Jin Lu, Jin-Xin Lin. On the Martensitic Transformation Temperatures and Mechanical Properties of NiTi Alloy Manufactured by Selective Laser Melting: Effect of Remelting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1223-1233. |
[4] | Wei Zhang, Zhi-Hong Dong, Hong-Wei Kang, Chen Yang, Yu-Jiang Xie, Mohamad Ebrahimnia, Xiao Peng. Enhancement of Strength-Ductility Balance of the Laser Melting Deposited 12CrNi2 Alloy Steel Via Multi-step Quenching Treatment [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1234-1244. |
[5] | Jiafen Song, Zishu Chai, Jian Zheng, Qingfeng Wu, Feng He, Zenan Yang, Junjie Li, Jincheng Wang, Haiou Yang, Zhijun Wang. Design Fe-based Eutectic Medium-Entropy Alloys Fe2NiCrNbx [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1103-1108. |
[6] | Yulun Wu, Rui Hu, Jieren Yang, Keren Zhang, Xuyang Wang. Active Eutectoid Decomposition of α → γ + τ1 and the Morphological Evolution in a Ru-Containing TiAl Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1042-1050. |
[7] | Xuan Huang, Yong Dong, Shaomu Lu, Chuanqiang Li, Zhengrong Zhang. Effects of Homogenized Treatment on Microstructure and Mechanical Properties of AlCoCrFeNi2.2 Near-Eutectic High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1079-1086. |
[8] | Zhitao Yu, Minghui Chen, Qunchang Wang, Xiaolan Wang, Fuhui Wang. Effect of Interfacial Microstructure on Mechanical and Tribological Properties of Cu/WS2 Self-lubricating Composites Sintered by Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 913-924. |
[9] | Chuanfeng Wu, Junmei Chen, Zhiyuan Yu, Hao Lu, Chun Yu, Jijin Xu. Ductility Anisotropy Induced by Ferrite in Direct Laser Deposited 17-4 PH Steel: Combined Microstructure and Dislocation Density Simulation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 765-776. |
[10] | Ling-Yang Yuan, Pan-Wen Han, Ghulam Asghar, Bao-Liang Liu, Jin-Ping Li, Bin Hu, Peng-Huai Fu, Li-Ming Peng. Development of High Strength and Toughness Non-Heated Al-Mg-Si Alloys for High-Pressure Die-Casting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 845-860. |
[11] | Guang-Lei Wang, Jin-Lai Liu, Ji-De Liu, Yi-Zhou Zhou, Xu-Dong Sun, Hai-Feng Zhang, Xiao-Feng Sun. Effect of Orientation on Stress-Rupture Property and Related Deformation Microstructure of a Ni-Base Re-containing Single-Crystal Superalloy at 900 °C [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 719-728. |
[12] | Dong Wu, Shitong Wei, Shanping Lu. A Study of Microstructure and Mechanical Properties for the Autogenous Single-Pass Butt Weldment of a Ferritic/Martensitic Steel Using Gas Tungsten Arc Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 628-638. |
[13] | Chenliang Chu, Weiping Chen, Zhen Chen, Zhenfei Jiang, Hao Wang, Zhiqiang Fu. Microstructure and Mechanical Behavior of FeNiCoCr and FeNiCoCrMn High-Entropy Alloys Fabricated by Powder Metallurgy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 445-454. |
[14] | Ibrahim Ondicho, Bernard Alunda, Fredrick Madaraka, Melody Chepkoech. Effect of Bimodal Grain Size Distribution on the Strain Hardening Behavior of a Medium-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 465-475. |
[15] | Hua-Zhen Jiang, Zheng-Yang Li, Tao Feng, Peng-Yue Wu, Qi-Sheng Chen, Yun-Long Feng, Long-Fei Chen, Jing-Yu Hou, He-Jian Xu. Effect of Process Parameters on Defects, Melt Pool Shape, Microstructure, and Tensile Behavior of 316L Stainless Steel Produced by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 495-510. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||