Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (8): 1410-1420.DOI: 10.1007/s40195-025-01873-7
Previous Articles Next Articles
					
													Qi Pan1, Shichong Zhou1, Fangxi Wang2( ), Peng Chen1(
), Peng Chen1( )
)
												  
						
						
						
					
				
Received:2024-12-14
															
							
																	Revised:2025-01-24
															
							
																	Accepted:2025-02-25
															
							
																	Online:2025-05-17
															
							
																	Published:2025-05-17
															
						Contact:
								Fangxi Wang, Peng Chen   
													Qi Pan, Shichong Zhou, Fangxi Wang, Peng Chen. Cross Slip and Twinning During Torsion Around 
Add to citation manager EndNote|Ris|BibTeX
 
																													Fig. 1 a Initial torsion model. b Crystallographic relationship showing the torsion axes along $\left[11\overline{2 }0\right]$ and $\left[10\overline{1 }0\right]$. The Z-direction is always along $\left[0001\right]$, and the Y-direction is the torsion axis. When Y is along $\left[10\overline{1 }0\right]$, X is along $\left[11\overline{2 }0\right]$; when Y is along $\left[11\overline{2 }0\right]$, X is along $\left[ {10\overline{1}0} \right]$
 
																													Fig. 2 a Evolution of torque with respect to torsion angle around $\left[ {11\overline{2}0} \right]$ and $\left[ {10\overline{1}0} \right]$. b Gradient shear stress distribution on the cross-section of the torsion sample. Other stress components are negligible during torsion
 
																													Fig. 3 Torsion behavior around the $\left[11\overline{2 }0\right]$ axis, illustrating the dislocation behavior at various torsion angles. The basal dislocation can be identified by the green atoms, which represent the basal staking faults created by the basal partial dislocations. The prismatic dislocations are the ones in white
 
																													Fig. 4 a–d Torsion behavior around the $\left[11\overline{2 }0\right]$ axis, illustrating the dislocation slip at various torsion angles. e–h Distribution of von Misses stress
 
																													Fig. 5 Torsion behavior around $\left[ {10\overline{1}0} \right]$ axis. a–d Evolution of dislocations with increasing torsion angle. Basal and prismatic dislocations as well as $\left\{ {11\overline{2}1} \right\}$ twin are activated to accommodate the torsion deformation. e, f Distribution of von Misses stress indicating the local deformation is accommodated by dislocations, formation of grain boundary and twin. The boxed regions will be further analyzed to reveal the cross slip and twinning mechanisms
 
																													Fig. 6 a–c A basal trailing partial nucleates and catches up with the leading partial, erasing the basal stacking fault in between. d Cross slip from basal plane to prismatic plane. e–g Screw prismatic dislocation glides along the Burgers vector direction, i.e., $\langle 11\overline{2 }0\rangle$, causing the dislocation line to shift downward by a distance of six atomic layers (indicated by the black arrow). h Sketch showing the cross slip from basal plane to prismatic plane. The horizontal and vertical planes are basal and prismatic slip planes, respectively
 
																													Fig. 7 a A prismatic dislocation connected to a basal dislocation is observed. b Length of prismatic plane is decreasing while the basal dislocation length is increasing, indicating the cross slip from prismatic plane to basal plane. c, d Basal dislocation shortens, while the prismatic dislocation elongates and shifts upward (indicated by the black arrow), meaning that cross slip from basal to prismatic is taking place. e Sketch showing the double cross slip from prismatic plane to basal plane, then back to prismatic plane
 
																													Fig. 8 Interaction between basal and prismatic dislocations. The dislocation line of full dislocation with Burgers vector of $\frac{1}{3}\langle 11\overline{2 }0\rangle$ is shown in green, and the dislocation line for basal partial dislocation with Burgers vector of $\frac{1}{3}\langle 10\overline{1 }0\rangle$ is shown in orange. a A screw prismatic dislocation is connected to a dissociated basal dislocation. b, c Prismatic dislocation interacts with the basal dislocation. d Bottom prismatic dislocation can move to basal plane and further dissociate into basal partials
 
																													Fig. 9 a–d Cross-section view along the $\left[10\overline{1 }0\right]$ axis showing the nucleation and detwinning of the $\left\{ {10\overline{1}1} \right\}$ twin. The atoms in the perfect lattice are hidden, and only lattice defects are shown. e–h Evolution of $\left\{ {10\overline{1}1} \right\}$ twin from nucleation, growth to detwinning
| [1] | Z. Wu, W.A. Curtin, Nature 526, 62 (2015) | 
| [2] | B.Y. Liu, F. Liu, N. Yang, X.B. Zhai, L. Zhang, Y. Yang, B. Li, J. Li, E. Ma, J.F. Nie, Z.W. Shan, Science 365, 73 (2019) | 
| [3] | Z. Yang, J. Li, J. Zhang, G. Lorimer, J. Robson, Acta Metall. Sin.-Engl. Lett. 21, 313 (2008) | 
| [4] | B. Shi, C. Yang, Y. Peng, F. Zhang, F. Pan, J. Magnes. Alloys 10, 1476 (2022) | 
| [5] | X.Y. Wang, Y.F. Wang, C. Wang, S. Xu, J. Rong, Z.Z. Yang, J.G. Wang, H.Y. Wang, J. Mater. Sci. Technol. 49, 117 (2020) | 
| [6] | S.R. Agnew, Ö. Duygulu, Int. J. Plast. 21, 1161 (2005) | 
| [7] | Q. Zu, Y.F. Guo, S. Xu, X.Z. Tang, Y.S. Wang, Acta Metall. Sin.-Engl. Lett. 29, 301 (2016) | 
| [8] | J. Koike, N. Fujiyama, D. Ando, Y. Sutou, Scr. Mater. 63, 747 (2010) | 
| [9] | L. Wu, A. Jain, D.W. Brown, G.M. Stoica, S.R. Agnew, B. Clausen, D.E. Fielden, P.K. Liaw, Acta Mater. 56, 688 (2008) | 
| [10] | Y. Guo, X. Tang, Y. Wang, Z. Wang, S. Yip, Acta Metall. Sin.-Engl. Lett. 26, 75 (2013) | 
| [11] | Y. Guo, Y. Wang, H. Qi, D. Steglich, Acta Metall. Sin.-Engl. Lett. 23, 370 (2010) | 
| [12] | H. Zhao, X. Yang, Y. Peng, L. Wu, Y. Wu, B. Shi, J. Magnes. Alloys 13, 839 (2025) | 
| [13] | X. Zhu, L. Carneiro, H. Wang, Y. Wu, P. Wu, Y. Jiang, Metall. Mater. Trans. A 55, 2790 (2024) | 
| [14] | H. Chen, Z. Shen, B. Song, J. She, J. Mater. Eng. Perform. 33, 12793 (2024) | 
| [15] | X. Zhang, S. Li, X. Guo, H. Wang, Q. Yu, P. Wu, Int. J. Mech. Sci. 191, 106062 (2021) | 
| [16] | X.Q. Guo, W. Wu, P.D. Wu, H. Qiao, K. An, P.K. Liaw, Scr. Mater. 69, 319 (2013) | 
| [17] | C. Yang, G. Zhu, H. Zhao, Y. Peng, B. Shi, J. Magnes. Alloys 11, 1672 (2023) | 
| [18] | L. Carneiro, D. Culbertson, Q. Yu, Y. Jiang, Mater. Sci. Eng. -Struct. Mater. Prop. Microstruct. Process. 801, 140405 (2021) | 
| [19] | N. Guo, B. Song, C. Guo, R. Xin, Q. Liu, Mater. Des. 83, 270 (2015) | 
| [20] | J. Li, D. Lu, G. Cai, K. Zhang, Y. Lan, Q. Li, Mater. Today Commun. 27, 102227 (2021) | 
| [21] | P.D. Wu, H. Wang, K.W. Neale, Int. J. Appl. Mech. 04, 1250024 (2012) | 
| [22] | C. Yang, H. Liu, B. Yang, B. Shi, Y. Peng, F. Pan, L. Wu, Mater. Sci. Eng. A 743, 391 (2019) | 
| [23] | J. Yu, Z. Zhang, P. Xu, B. Dong, Q. Wang, M. Meng, H. Hao, X. Li, X. Yin, J. Alloys Compd. 787, 239 (2019) | 
| [24] | A. Koblischka Veneva, M.R. Koblischka, J. Schmauch, M. Murakami, J. Supercond. Nov. Magn. 32, 3155 (2019) DOI | 
| [25] | V. Randle, J. Mater. Sci. 44, 4211 (2009) | 
| [26] | K.D. Molodov, T. Al Samman, D.A. Molodov, Metals 13, 640 (2023) | 
| [27] | M. Yaghoobi, G. Voyiadjis, V. Sundararaghavan, Crystals 11, 435 (2021) | 
| [28] | M.S. Daw, M.I. Baskes, Phys. Rev. B 29, 6443 (1984) | 
| [29] | M.S. Daw, M.I. Baskes, Phys. Rev. Lett. 50, 1285 (1983) | 
| [30] | X.Y. Liu, J.B. Adams, F. Ercolessi, J.A. Moriarty, Model. Simul. Mater. Sci. Eng. 4, 293 (1996) | 
| [31] | P. Chen, J. Ombogo, B. Li, Acta Mater. 186, 291 (2020) | 
| [32] | P. Chen, F. Wang, B. Li, Acta Mater. 164, 440 (2019) | 
| [33] | X.Y. Zhang, B. Li, Q. Liu, Acta Mater. 90, 140 (2015) | 
| [34] | S. Nosé, J. Chem. Phys. 81, 511 (1984) | 
| [35] | S. Nosé, Prog. Theor. Phys. Suppl. 103, 1 (1991) | 
| [36] | A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2010) | 
| [37] | J. Dana, H.C. HoneycuttAndersen, J. Phys. Chem. 91, 4950 (1987) | 
| [38] | F. Shimizu, S. Ogata, J. Li, Mater. Trans. 48, 2923 (2007) | 
| [39] | S. Pendurti, S. Jun, I.H. Lee, V. Prasad, Appl. Phys. Lett. 88, 201908 (2006) | 
| [40] | T. Rasmussen, K.W. Jacobsen, T. Leffers, O.B. Pedersen, Phys. Rev. B 56, 2977 (1997) | 
| [41] | W.P. Kuykendall, Y. Wang, W. Cai, J. Mech. Phys. Solids 144, 104105 (2020) | 
| [42] | Z. Wu, W.A. Curtin, Proc. Natl. Acad. Sci. 113, 11137 (2016) | 
| [43] | Z. Huang, C. Yang, J.E. Allison, L. Qi, A. Misra, J. Alloys Compd. 859, 157858 (2021) | 
| [44] | V.V. Bulatov, L.L. Hsiung, M. Tang, A. Arsenlis, M.C. Bartelt, W. Cai, J.N. Florando, M. Hiratani, M. Rhee, G. Hommes, T.G. Pierce, T.D. De La Rubia, Nature 440, 1174 (2006) | 
| [45] | R.B. Sills, N. Bertin, A. Aghaei, W. Cai, Phys. Rev. Lett. 121, 085501 (2018) | 
| [46] | A. Abu Odeh, T. Allaparti, M. Asta, Phys. Rev. Mater. 6, 103603 (2022) | 
| [47] | R. Madec, B. Devincre, L.P. Kubin, Phys. Rev. Lett. 89, 255508 (2002) | 
| [48] | D. Rodney, R. Phillips, Phys. Rev. Lett. 82, 1704 (1999) | 
| [49] | P. Chen, F. Wang, B. Li, Acta Mater. 171, 65 (2019) | 
| [50] | P. Chen, B. Li, J. Magnes. Alloys 13, 681 (2025) | 
| [51] | J.N. Zhou, Y.F. Guo, J.Y. Ren, X.Z. Tang, Scr. Mater. 236, 115670 (2023) | 
| [52] | J.W. Christian, S. Mahajan, Prog. Mater. Sci. 39, 1 (1995) | 
| [53] | S. Zhou, P. Chen, M. Zha, Y. Zhu, B. Li, H.Y. Wang, Scr. Mater. 236, 115678 (2023) | 
| [54] | A.H. Cottrell, B.A. Bilby, Lond. Edinb. Dublin Philos. Mag. J. Sci. 42, 573 (1951) | 
| [55] | B. Li, B.Y. Cao, K.T. Ramesh, E. Ma, Acta Mater. 57, 4500 (2009) | 
| [56] | C. He, Z. Li, D. Kong, X. Zhao, H. Chen, J.F. Nie, Scr. Mater. 191, 62 (2021) | 
| [57] | Y. He, Z. Fang, C. Wang, G. Wang, S.X. Mao, Nat. Commun. 15, 2994 (2024) | 
| [58] | Y. Wang, B. Li, Y. Liao, Acta Mater. 282, 120480 (2025) | 
| [59] | B. Li, H. El Kadiri, M.F. Horstemeyer, Philos. Mag. 92, 1006 (2012) | 
| [60] | A. Serra, D.J. Bacon, Mater. Sci. Eng. A 400-401, 496 (2005) | 
| [61] | B. Li, K. Chen, Acta Mater. 232, 117943 (2022) | 
| [1] | Fengyi Wang, Jingyuan Ma, Jiahao Liu, Hongjun Ji, Hongtao Chen. Development of an Antioxidation Copper Paste with Self-Reducing Copper Formate and Molecular Dynamics Analysis of Sintering Mechanisms [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1351-1360. | 
| [2] | Dongchao Li, Fen Zhang, Lanyue Cui, Yueling Guo, Rongchang Zeng. Accelerated Corrosion Rate of Wire Arc Additive Manufacturing of AZ91D Magnesium Alloy: The Formation of Nano-scaled AlMn Phase [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1069-1082. | 
| [3] | Yuxuan Li, Xi Zhao, Shuchang Li, Yihan Gao, Rui Guo. Precipitation Behavior and Strengthening and Toughening Mechanisms of Pre-fabricated Strong Basal Texture AZ80 + 0.4%Ce Alloy Under Room-Temperature Pre-deformation Coupled with Dual-Stage Aging Conditions [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(7): 1127-1144. | 
| [4] | Meisa Zhou, Kun-Ming Pan, Xiao-Ye Zhou, Shulong Ye, Shaojie Du, Hong-Hui Wu. Surface Wear Behavior of Nanograined NbMoTaW Refractory High-Entropy Alloys via Nano-scratching Simulations [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 946-960. | 
| [5] | Bolun Han, Kai Feng, Zhuguo Li, Pan Liu, Yakai Zhao, Junnan Jiang, Yiwei Yu, Zhiyuan Wang, Kaifeng Ji. Experimental and Molecular Dynamics Simulation Study of Chemical Short-Range Order in CrCoNi Medium-Entropy Alloy Fabricated Using Laser Powder Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 961-968. | 
| [6] | Liping Wu, Junhua Dong, Xianfei Zheng, Zhongying Wang, Xiaoying Sun, Xiuling Shang, Wei Ke, Changgang Wang. Effect of K2HPO4 Concentration on the Formation, Structure, Composition and Protectiveness of Conversion Coating Deposited on AZ31 Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 481-496. | 
| [7] | Wei Qiu, Shuang-Long Li, Zhao-Yuan Lu, Sen-Mao Zhang, Jian Chen, Wei Chen, Lang Gan, Wei Li, Yan-Jie Ren, Jun Luo, Mao-Hai Yao, Wen Xie. Effects of CeO2 Content on the Microstructure and Mechanical Properties of ZK60 Mg Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 287-298. | 
| [8] | Ji-Peng Yang, Hai-Feng Zhang, Hong-Chao Ji, Nan Jia. Molecular Dynamics Simulations of Micromechanical Behaviours for AlCoCrFeNi2.1 High Entropy Alloy during Nanoindentation [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 218-232. | 
| [9] | Li-Lan Gao, Jiang Ma, Yan-Song Tan, Xiao-Hao Sun, Qi-Jun Gao, De-Bao Liu, Chun-Qiu Zhang. Effect of Free-End Torsion on the Corrosion and Mechanical Properties for Mg-3Zn-0.2Ca Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 59-70. | 
| [10] | Jie Lu, Yanhui Li, Shuang Ma, Wanping Li, Feng Bao, Zhengwang Zhu, Qiaoshi Zeng, Haifeng Zhang, Man Yao, Wei Zhang. Novel Soft Magnetic Co-Based Ternary Co-Er-B Bulk Metallic Glasses [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1633-1642. | 
| [11] | Xue Li, Qingzhen Zhao, Hao Su, Ji Chen, Chuansong Wu. Intermetallic Compounds Formation in Dissimilar Friction Stir Welding of Mg/Cu Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1523-1532. | 
| [12] | Z. C. Meng, K. G. Wang, T. Ali, D. Li, C. G. Bai, D. S. Xu, S. J. Li, A. H. Feng, G. J. Cao, J. H. Yao, Q. B. Fan, H. Wang, R. Yang. Atomistic Investigation of Shock-Induced Amorphization within Micro-shear Bands in Hexagonal Close-Packed Titanium [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1590-1600. | 
| [13] | Zhenfei Jiang, Bo Hu, Zixin Li, Fanjin Yao, Jiaxuan Han, Dejiang Li, Xiaoqin Zeng, Wenjiang Ding. A Review of Magnesium Alloys as Structure-Function Integrated Materials [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1301-1338. | 
| [14] | Ze-Song Wei, Zi-You Ding, Lei Cai, Shao-Xia Ma, Dong-Qing Zhao, Lan-Yue Cui, Cheng-Bao Liu, Yuan-Sheng Yang, Yuan-Ding Huang, Rong-Chang Zeng. Exfoliation Corrosion of As-Extruded Mg-1Li-1Ca: the Influence of the Superficial Layer [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1339-1353. | 
| [15] | Gang Zeng, Hong Liu, Jing-Peng Xiong, Jian-Long Li, Yong Liu. Enhanced Grain Refining Effect of Mg-Zr Master Alloy on Magnesium Alloys via a Synergistic Strategy Involving Heterogeneous Nucleation and Solute-Driven Growth Restriction [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1354-1366. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
 WeChat
			   WeChat
			