Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (6): 946-960.DOI: 10.1007/s40195-025-01832-2
Previous Articles Next Articles
Meisa Zhou1,2, Kun-Ming Pan1(), Xiao-Ye Zhou2(
), Shulong Ye2, Shaojie Du2, Hong-Hui Wu3,4(
)
Received:
2024-11-07
Revised:
2024-12-13
Accepted:
2024-12-29
Online:
2025-06-10
Published:
2025-03-25
Contact:
Kun-Ming Pan, Meisa Zhou, Kun-Ming Pan, Xiao-Ye Zhou, Shulong Ye, Shaojie Du, Hong-Hui Wu. Surface Wear Behavior of Nanograined NbMoTaW Refractory High-Entropy Alloys via Nano-scratching Simulations[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(6): 946-960.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Models for the MD simulations of wear on NbMoTaW surface. a Section view of the indentation and scratching processes, b grain distribution for the NG-5, c NG-10, d NG-20, and e single-crystalline model. Atoms belonging to different crystal structures are distinguished by the common neighbor analysis (CNA) [28] module of OVITO. Atoms belonging to the BCC phase are colored as dark purple, while GB atoms are colored as gray
Fig. 2 Evolution of the indentation and scratching force in the normal (y) and tangential (x) directions of the three nanograined models and the single-crystalline model. a and b Variations in Fy and Fx during the indentation process, c and d variations in Fy and Fx during the scratching process
Fig. 4 Nano-scratching process of the single-crystalline model. a-d Atomic structure evolution of the single-crystalline at different stages during the scratching process, e-h the nucleation and growth of deformation twins during the scratching process
Fig. 5 Nano-scratching process of the NG-5 model. a-d Atomic structure evolution of the NG-5 model during the scratching process, e-h enlarged view of the area enclosed by the yellow frame in a-d
Fig. 6 Nano-scratching process of the NG-10 model. a-d Atomic structure evolution of the NG-10 model during the scratching process, e-h enlarged view of the area enclosed by the yellow frame in a-d
Fig. 7 Nano-scratching process of the NG-20 model. a-d Atomic structure evolution of the NG-20 model during the scratching process, e-h enlarged view of the area enclosed by the yellow frame in a-d
Fig. 10 Evolution of the indentation and scratching force in the normal (y) and tangential (x) directions of the NG-20 models at 300 K, 700 K, and 1100 K. a and b Variations in Fy and Fx of the NG-20 models during the indentation process, c and d variations in Fy and Fx of the NG-20 models during the scratching process
Fig. 14 Stress distribution plots for models with different grain sizes during the scratching simulation: a NG-5 model, b NG-10 model, and c NG-20 model
[1] | X.J. Hua, P. Hu, H.R. Xing, J.Y. Han, S.W. Ge, S.L. Li, C.J. He, K.S. Wang, C.J. Cui, Acta Metall. Sin.-Engl. Lett. 35, 1231 (2022) |
[2] | O. Senkov, G. Wilks, D. Miracle, C. Chuang, P. Liaw, Intermetallics 18, 1758 (2010) |
[3] | O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Intermetallics 19, 698 (2011) |
[4] | Y. Wan, Q. Wang, J. Mo, Z. Zhang, X. Wang, X. Liang, B. Shen, Adv. Eng. Mater. 24, 2100765 (2022) |
[5] | K. Holmberg, A. Erdemir, Friction 5, 263 (2017) |
[6] | O.N. Senkov, D.B. Miracle, K.J. Chaput, J.P. Couzinie, J. Mater. Res. 33, 3092 (2018) |
[7] | A. Poulia, E. Georgatis, A. Lekatou, A. Karantzalis, Adv. Eng. Mater. 19, 1600535 (2017) |
[8] | Y. Ye, C. Liu, H.J. Wang, T. Nieh, Acta Mater. 147, 78 (2018) |
[9] | H.Z. Li, X.L. Li, C. Jin, Q. Li, Q. Ma, K. Hua, H.F. Wang, W.M. Liu, J. Mater. Sci. Technol. 156, 241 (2023) |
[10] | H. Hamdi, H.R. Abedi, Y. Zhang, Adv. Eng. Mater. 25, 2201915 (2023) |
[11] | M.G. Jiru, B. Singh, Int. J. Adv. Manuf. Technol. 110, 275 (2020) |
[12] | W. Zhai, L. Bai, R. Zhou, X. Fan, G. Kang, Y. Liu, K. Zhou, Adv. Sci. 8, 2003739 (2021) |
[13] | X.P. Li, S.Z. Kure-Chu, T. Ogasawara, H. Yashiro, H.B. Wang, Z.Z. Xu, X.H. Li, G.L. Song, G.Y. Tang, Acta Metall. Sin.-Engl. Lett. 31, 1258 (2018) |
[14] | H. Huang, Z. Wang, J. Lu, K. Lu, Acta Mater. 87, 150 (2015) |
[15] | W. Li, N. Tao, Z. Han, K. Lu, Wear 274, 306 (2012) |
[16] | G.Z. Ma, B.S. Xu, H.D. Wang, H.J. Si, Appl. Surf. Sci. 257, 1204 (2010) |
[17] | M. Matsui, H. Kakishima, Wear 260, 669 (2006) |
[18] | X. Liu, W. Cai, Y. Zhang, L. Wang, J. Wang, Front. Mater. 10, 1145631 (2023) |
[19] | J. Luo, W. Sun, R. Duan, W. Yang, K. Chan, F. Ren, X.S. Yang, J. Mater. Sci. Technol. 110, 43 (2022) |
[20] |
R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)
PMID |
[21] | H. Li, W. Du, Y. Liu, Acta Metall. Sin.-Engl. Lett. 33, 741 (2020) |
[22] | Y. Peng, S.F. Wang, Y. Zhang, Y.N. Gao, Adv. Mater. Res. 572, 232 (2012) |
[23] | G. Lei, Y. Zhang, H. Gao, X. Cui, H. Yu, J. Appl. Phys. 133, 155901 (2023) |
[24] | S. Plimpton, J. Comput. Phys. 117, 1 (1995) |
[25] | L. Dong, F. Wang, H.H. Wu, M. Gao, P. Bai, S. Wang, G. Wu, J. Gao, X. Zhou, X. Mao, Acta Metall. Sin.-Engl. Lett. 36, 1925 (2023) |
[26] | H.M. Pen, Q.S. Bai, Y.C. Liang, M.J. Chen, Acta Metall. Sin.-Engl. Lett. 22, 440 (2009) |
[27] | R. Liu, W. Li, X. Yu, L. Liu, B. Wang, Acta Metall. Sin.-Engl. Lett. 37, 1377 (2024) |
[28] | A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2009) |
[29] | J. Behler, J. Chem. Phys. 134, 074106 (2011) |
[30] | F. Wang, H.H. Wu, L. Dong, G. Pan, X. Zhou, S. Wang, R. Guo, G. Wu, J. Gao, F.Z. Dai, J. Mater. Sci. Technol. 165, 49 (2023) |
[31] | X.Y. Zhou, H.H. Wu, Y. Wu, X. Liu, X. Peng, S. Hou, Z. Lu, Acta Mater. 281, 120364 (2024) |
[32] | X.Y. Zhou, W. Lu, X. Peng, X. Zhuang, M. Wang, X.S. Yang, S. Ye, H.H. Wu, Acta Mater. 288, 120856 (2025) |
[33] | X.G. Li, C. Chen, H. Zheng, Y. Zuo, S.P. Ong, NPJ Comput. Mater. 6, 70 (2020) |
[34] | F.A. Furtado, C.R. Abreu, F.W. Tavares, AIChE J. 61, 2881 (2015) |
[35] | A. Sharma, D. Datta, R. Balasubramaniam, Comput. Mater. Sci. 153, 241 (2018) |
[36] | G. Wang, Z. Feng, Q. Zheng, B. Li, H. Zhou, Mater. Sci. Semicond. Process. 118, 105168 (2020) |
[37] | J. Chen, S. Weng, H. Wu, China Surf. Eng. 34, 99 (2021) |
[38] | A. Stukowski, K. Albe, Model. Simul. Mater. Sci. Eng. 18, 085001 (2010) |
[39] | Q.Y. Liao, D.Z. Zhao, Q.C. Le, W.X. Hu, Y.C. Jiang, W.Y. Zhou, L. Ren, D.D. Li, Z.Y. Yin, Acta Metall. Sin.-Engl. Lett. 37, 1115 (2024) |
[40] | D. Zhang, M. Chen, X. Zhang, K. Li, L. Wang, Z. Zhao, P. Bai, D. Fang, Acta Metall. Sin.-Engl. Lett. 37, 1830 (2024) |
[41] | T. Zhu, J. Li, Mater. Sci. 55, 710 (2010) |
[42] | H. Peng, Z. Jian, C. Liu, L. Huang, Y. Ren, F. Liu, J. Mater. Sci. Technol. 109, 186 (2022) |
[43] | S.Y. Chang, T.K. Chang, J. Appl. Phys. 101, 033507 (2007) |
[44] | M.S. Hasan, R. Lee, W. Xu, J. Magnes. Alloys 8, 1296 (2020) |
[45] | J.P. Du, Y.J. Wang, Y.C. Lo, L. Wan, S. Ogata, Phys. Rev. B 94, 104110 (2016) |
[46] | C. Carlton, P. Ferreira, Acta Mater. 55, 3749 (2007) |
[47] | R. Scattergood, C. Koch, Koch, Scr. Metall. Mater. 27, 1195 (1992) |
[48] |
W. Yujie, Acta Metall. Sin. 50, 183 (2014)
DOI |
[49] | H. Margolin, M.S. Stanescu, Acta Metall. 23, 1411 (1975) |
[50] | M.A. Meyersm, E. Ashworth, Philos. Mag. A 46, 737 (1982) |
[51] | A.W. Thompson, M.I. Baskes, W.F. Flanagan, Acta Metall. 21, 1017 (1973) |
[52] | M. Kato, Mater. Trans. 55, 19 (2014) |
[53] | J. Hu, Y. Shi, X. Sauvage, G. Sha, K. Lu, Science 355, 1292 (2017) |
[54] | O. Deluigi, F. Valencia, D.R. Tramontina, N. Amigo, J. Rojas-Nunez, E.M. Bringa, Crystals 13, 357 (2023) |
[55] | E.N. Hahn, M.A. Meyers, Mater. Sci. Eng. A 646, 101 (2015) |
[56] | S.N. Naik, S.M. Walley, J. Mater. Sci. 55, 2661 (2020) |
[57] | Y. Wu, Z. Bai, G. Yan, W. Yu, S. Shen, J. Refract. Met. Hard Mater. 125, 106885 (2024) |
[1] | Lingxiao Du, Hang Ding, Yun Xie, Li Ji, Wanbin Chen, Yunze Xu. Effect of Laser Energy Density on Microstructures and Properties of Additively Manufactured AlCoCrFeNi2.1 Eutectic High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 233-244. |
[2] | J. Sharath Kumar, Rakesh Kumar, Rajeev Verma. Surface Modification Aspects for Improving Biomedical Properties in Implants: A Review [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 213-241. |
[3] |
Chao Wang, Xi Zhao, Yayun He, Dingxia Zheng.
Implementation of Balanced Strength and Toughness of VW93A Rare-Earth Magnesium Alloy with Regulating the Overlapping Structure of Lamellar LPSO Phase and |
[4] | Shuang Ma, Junyu Zhang, Xudong Wang, Rie Y. Umetsu, Li Jiang, Wei Zhang, Man Yao. Structural Origins for Enhanced Thermal Stability and Glass-Forming Ability of Co-B Metallic Glasses with Y and Nb Addition [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 962-972. |
[5] | Xue Yin, Yan-Kun Dou, Xin-Fu He, Ke Jin, Cheng-Long Wang, Ya-Guang Dong, Cun-Yong Wang, Yun-Fei Xue, Wen Yang. Effects of Nb Addition on Charpy Impact Properties of TiVTa Refractory High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 405-416. |
[6] | Linshuo Dong, Feiyang Wang, Hong-Hui Wu, Mengjie Gao, Penghui Bai, Shuize Wang, Guilin Wu, Junheng Gao, Xiaoye Zhou, Xinping Mao. Enhanced Hydrogen Embrittlement Resistance via Cr Segregation in Nanocrystalline Fe-Cr Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 1925-1935. |
[7] | Xing-Jiang Hua, Ping Hu, Hai-Rui Xing, Jia-Yu Han, Song-Wei Ge, Shi-Lei Li, Chao-Jun He, Kuai-She Wang, Chun-Juan Cui. Development and Property Tuning of Refractory High-Entropy Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1231-1265. |
[8] | Yong Wen, Yan-Fei Wang, Hao Ran, Wei Wei, Jun-Ming Zhang, Chong-Xiang Huang. Improving the Mechanical and Tribological Properties of NiTi Alloys by Combining Cryo-Rolling and Post-Annealing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 317-325. |
[9] | Yunhai Su, Xuewei Liang, Yunqi Liu, Zhiyong Dai. Effect of Ti Addition on the Microstructure and Property of FeAlCuCrNiMo0.6 High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 957-967. |
[10] | Sabbah Ataya, Naser A. Alsaleh, Mohamed M. El-Sayed Seleman. Strength and Wear Behavior of Mg Alloy AE42 Reinforced with Carbon Short Fibers [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(1): 31-40. |
[11] | Ali Shamsipur, Seyed-Farshid Kashani-Bozorg, Abbas Zarei-Hanzaki. Surface Modification of Titanium by Producing Ti/TiN Surface Composite Layers via FSP [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(6): 550-557. |
[12] | Qun Zu, Ya-Fang Guo, Shuang Xu, Xiao-Zhi Tang, Yue-Sheng Wang. Molecular Dynamics Simulations of the Orientation Effect on the Initial Plastic Deformation of Magnesium Single Crystals [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(3): 301-312. |
[13] | Yan-Hui Zhao, Wen-Jin Yang, Chao-Qian Guo, Yu-Qiu Chen, Bao-Hai Yu, Jin-Quan Xiao. Effect of Axial Magnetic Field on the Microstructure, Hardness and Wear Resistance of TiN Films Deposited by Arc Ion Plating [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(8): 984-993. |
[14] | Wen-Qin Wang, Tomiko Yamaguchi, Kazumasa Nishio. Microstructure and Wear Behavior of Cermet/Iron Alloy Cladding Layers on A6061 Alloy Coated by Resistance Seam Welding Method [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(4): 414-423. |
[15] | Junjun Cui, Hongyun Zhang, Liqing Chen, Haizhi Li, Weiping Tong. Microstructure and Mechanical Properties of a Wear-Resistant As-Cast Alloyed Bainite Ductile Iron [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(3): 476-482. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||