Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (4): 636-650.DOI: 10.1007/s40195-021-01302-5
Previous Articles Next Articles
Zohreh Yazdani1(), Mohammad Reza Toroghinejad1, Hossein Edris1
Received:
2021-05-13
Revised:
2021-06-15
Accepted:
2021-07-20
Online:
2021-08-26
Published:
2021-08-26
Contact:
Zohreh Yazdani
About author:
Zohreh Yazdani, z.yazdani@alumni.iut.ac.irZohreh Yazdani, Mohammad Reza Toroghinejad, Hossein Edris. Effects of Annealing on the Fabrication of Al-TiAl3 Nanocomposites Before and After Accumulative Roll Bonding and Evaluation of Strengthening Mechanisms[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 636-650.
Add to citation manager EndNote|Ris|BibTeX
Al | Si | Fe | Cu | Mn | Mg | Cr | Ni | Zn |
---|---|---|---|---|---|---|---|---|
99.05 | 0.156 | 0.710 | 0.133 | 0.047 | 0.030 | 0.015 | 0.038 | 0.037 |
Table 1 Chemical composition (wt%) of the Al sheets
Al | Si | Fe | Cu | Mn | Mg | Cr | Ni | Zn |
---|---|---|---|---|---|---|---|---|
99.05 | 0.156 | 0.710 | 0.133 | 0.047 | 0.030 | 0.015 | 0.038 | 0.037 |
Al condition | Tensile strength (MPa) | Yield strength (MPa) | Elongation | Hardness (HV) |
---|---|---|---|---|
As-received | 157 | 142 | 7 | 48 |
Annealed | 110 | 39 | 35 | 19 |
Table 2 Mechanical properties of the Al sheets
Al condition | Tensile strength (MPa) | Yield strength (MPa) | Elongation | Hardness (HV) |
---|---|---|---|---|
As-received | 157 | 142 | 7 | 48 |
Annealed | 110 | 39 | 35 | 19 |
Fig. 2 SEM images of the distribution of TiAl3 intermetallic particles after a one, b three, c five cycles of ARB procedure in the samples manufactured using cold roll bonding, annealing at 590 ℃ for 2 h, and ARB process (CRB-AT-ARB samples)
Fig. 3 SEM images exhibiting the distribution of TiAl3 intermetallic compounds in samples manufactured using cold roll bonding, annealing at 590 ℃ for 2 h, and ARB process for a 1, b 3, c 5 cycles
Fig. 6 TEM images of CRB-AT-ARB3 at different magnifications a, b, the relevant SAD pattern c (black and white arrows showing the geometrically necessary boundaries and intermetallic particles, respectively)
Fig. 9 a,b TEM images of two different areas of the CRB-ARB5-AT sample (white and black arrows showing the rolling direction and TiAl3 intermetallic particles, respectively)
Fig. 16 Variations in the hardness of the Al matrix in the initial Al, and CRB-ARB, and CRB-ARB-AT specimens after the first, third, and fifth cycles of the ARB process
CRB-AT-ARB samples in different cycles | Al grain size (µm) | TiAl3 particle size (µm) | Calculated grain boundary strengthening (Eq. (3)) | Dislocation density (1013 m-2) (Eq. (1)) | Strain hardening (MPa) (Eq. (4)) | Orowan (MPa), (Eq. (7)) | Theoretical yield strength (MPa) | Empirical yield strength (MPa) |
---|---|---|---|---|---|---|---|---|
CRB-AT-ARB1 | 1-5 | 0.7-40 | 76 (51%) | 1.8 | 40 (27%) | 32 (22%) | 148 | 160 |
CRB-AT-ARB2 | 0.8-1 | 0.6-10 | 111 (54%) | 4.5 | 48 (23%) | 46 (22%) | 205 | 210 |
CRB-AT-ARB3 | 0.5-0.8 | 0.5-10 | 127 (50%) | 10.8 | 66 (26%) | 58 (23%) | 251 | 253 |
CRB-AT-ARB4 | 0.4-0.6 | 0.5-8 | 138 (50%) | 18 | 82 (29%) | 57 (20%) | 277 | 284 |
CRB-AT-ARB5 | 0.2-0.5 | 0.2-5 | 150 (48%) | 45 | 98 (31%) | 60 (20%) | 308 | 310 |
Table 3 Calculated effects of grain boundary strengthening, strain hardening, and Orowan mechanisms compared to empirical data for CRB-AT-ARB samples
CRB-AT-ARB samples in different cycles | Al grain size (µm) | TiAl3 particle size (µm) | Calculated grain boundary strengthening (Eq. (3)) | Dislocation density (1013 m-2) (Eq. (1)) | Strain hardening (MPa) (Eq. (4)) | Orowan (MPa), (Eq. (7)) | Theoretical yield strength (MPa) | Empirical yield strength (MPa) |
---|---|---|---|---|---|---|---|---|
CRB-AT-ARB1 | 1-5 | 0.7-40 | 76 (51%) | 1.8 | 40 (27%) | 32 (22%) | 148 | 160 |
CRB-AT-ARB2 | 0.8-1 | 0.6-10 | 111 (54%) | 4.5 | 48 (23%) | 46 (22%) | 205 | 210 |
CRB-AT-ARB3 | 0.5-0.8 | 0.5-10 | 127 (50%) | 10.8 | 66 (26%) | 58 (23%) | 251 | 253 |
CRB-AT-ARB4 | 0.4-0.6 | 0.5-8 | 138 (50%) | 18 | 82 (29%) | 57 (20%) | 277 | 284 |
CRB-AT-ARB5 | 0.2-0.5 | 0.2-5 | 150 (48%) | 45 | 98 (31%) | 60 (20%) | 308 | 310 |
[1] | R.S. Rana, R. Purohit, S. Das, IJSER 3, 1 (2012) |
[2] | T.W. Clyne, in Encyclopedia of Materials: Science and Technology, Composites: MMC, CMC, PMC, ed. by A. Mortensen, (Elsevier, New York, 2001), p. 1 |
[3] | T. Massalski (ed.), binary alloy phase diagrams, (American society for metals, 1986) |
[4] | J. Heathcote, G. Odette, G. Lucas, R. Rowe, D. Skelly, Acta Mater. 44, 2489 (1996) |
[5] | D. Lesuer, C. Syn., Metallic laminates for engine applications. Paper presented at 8th CIMTEC World Ceramics Congress and Forum on New Materials, Florence, Italy, 1994 |
[6] |
Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Scr. Mater. 39, 1221 (1998)
DOI URL |
[7] |
Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Acta Mater. 47, 579 (1999)
DOI URL |
[8] |
N. Tsuji, Y. Ito, Y. Saito, Y. Minamino, Scr. Mater. 47, 893 (2002)
DOI URL |
[9] |
J. Oh, S.G. Pyo, S. Lee, N.J. Kim, J. Mater. Sci. 38, 3647 (2003)
DOI URL |
[10] |
J.G. Luo, V.L. Acoff, Mater. Sci. Eng. A 379, 164 (2004)
DOI URL |
[11] |
G.P. Chaudhari, V.L. Acoff, Intermetallics 18, 472 (2010)
DOI URL |
[12] |
Z. Yazdani, M.R. Toroghinejad, H. Edris, A.H.W. Ngan, J. Alloys Compd. 747, 217 (2018)
DOI URL |
[13] |
F.V. Loo, G. Rieck, Acta Metall. Mater. 21, 61 (1973)
DOI URL |
[14] |
W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992)
DOI URL |
[15] | Z. Yazdani, M.R. Toroghinejad, H. Edris, A.H.W. Ngan, T. Indian I. Metals 71, 2497 (2018) |
[16] |
R. Jamaati, M. R. Toroghinejad, Mater. Des. 31, 4816 (2010)
DOI URL |
[17] |
R.E. Smallman, K.H. Westmacott, Philos. Mag. 2, 669 (1957)
DOI URL |
[18] |
D. Rahmatabadi, R. Hashemi, B. Mohammadi, T. Shojaee, Mater. Sci. Eng. A 708, 301 (2017)
DOI URL |
[19] | R. Guan, D. Tie, Acta Metall. Sin. -Engl. Lett. 30, 409 (2017) |
[20] | H.R. Lin, Y.Z. Tian, S.J. Sun, Acta Metall. Sin. -Engl. Lett. 34, 925 (2021) |
[21] |
C.Y. Liu, R. Jing, Q. Wang, B. Zhang, Y.Z. Jia, M.Z. Ma, R.P. Liu, Mater. Sci. Eng. A 558, 510 (2012)
DOI URL |
[22] | N. Jia, M.W. Zhu, Y.R. Zheng, T. He, X. Zhao, Acta Metall. Sin. -Engl. Lett. 28, 600 (2015) |
[23] |
M. Alizadeh, M.H. Paydar, F.S. Jazi, Compos. Part B: Eng. 44, 339 (2013)
DOI URL |
[24] |
R. Jamaati, M.R. Toroghinejad, J. Dutkiewicz, J.A. Szpunar, Mater. Des. 35, 37 (2012)
DOI URL |
[25] | A. Mostafapor, V. Mohammadinia, Acta Metall. Sin. -Engl. Lett. 29, 735 (2016) |
[26] |
C.J. Hsu, C.Y. Chang, P.W. Kao, N.J. Ho, C.P. Chang, Acta Mater. 54, 5241 (2006)
DOI URL |
[27] |
M. Nakamura, K. Kimura, J. Mater. Sci. 26, 2208 (1991)
DOI URL |
[28] | D. Hull, T.W. Clyne, An Introduction to Composite Materials (Cambridge University, Cambridge, 1996), p. 66 |
[29] | E.O. Hall, The deformation and aging of mild steel. Proc. Phys. Soc. London B 64, 747 (1951) |
[30] | N.J. Petch, J. Iron Steel Inst. 25, 174 (1953) |
[31] |
C.Y. Yu, P.W. Kao, C.P. Chang, Acta Mater. 53, 4019 (2005)
DOI URL |
[32] |
B. Li, A. Godfrey, Q. Meng, Q. Liu, N. Hansen, Acta Mater. 52, 1069 (2004)
DOI URL |
[33] | J.W. Martin, Micromechanisms in Particle Hardened Alloys (Cambridge University, Cambridge, 1980), p. 60 |
[34] |
R. Casati, M. Vedani, Metals 4, 65 (2014)
DOI URL |
[35] | F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena (Elsevier, Oxford, 2004) |
[1] | Wen-Ting Zhu, Jun-Jun Cui, Zhen-Ye Chen, Yang Zhao, Li-Qing Chen. Correlation of Microstructure Feature with Impact Fracture Behavior in a TMCP Processed High Strength Low Alloy Construction Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 527-536. |
[2] | Yubin Du, Xiaofeng Hu, Yuanyuan Song, Yangpeng Zhang, Lijian Rong. Effect of Nanoscale Cu-Riched Clusters on Strength and Impact Toughness in a Tempered Cu-Bearing HSLA Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 537-550. |
[3] | Masoumeh Moradi, Jianlin Li, Wenhui Liu, Dake Xu, Fuhui Wang. Inhibitory Effect of Vibrio neocaledinocus sp. and Pseudoalteromonas piscicida Dual-Species Biofilms on the Corrosion of Carbon Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 551-562. |
[4] | Enobong Felix Daniel, Junhua Dong, Xiaofang Li, Ini-Ibehe Nabuk Etim, Inime Ime Udoh, Rongyao Ma, Lei Chen, Changgang Wang. Corrosion Behaviour of Carbon Steel Fasteners in Neutral Chloride Solution [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 563-576. |
[5] | Wenbin Tian, Dong Wu, Yiyi Li, Shanping Lu. Precipitation Behavior and Mechanical Properties of a 16Cr-25Ni Superaustenitic Stainless Steel Weld Metal During Post-weld Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 577-590. |
[6] | Xin Cai, Xiaoqiang Hu, Leigang Zheng, Dianzhong Li. Redistribution of C and N Atoms in High Nitrogen Martensitic Stainless Steel During Cryogenic Treatment [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 591-595. |
[7] | Zijian Yu, Xi Xu, Baotian Du, Kang Shi, Ke Liu, Shubo Li, Xiuzhu Han, Tao Xiao, Wenbo Du. Precipitate Characteristics and Mechanical Performance of Cast Mg-6RE-1Zn-xCa-0.3Zr (x = 0 and 0.4 wt%) Alloys [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 596-608. |
[8] | Lihui Song, Ming Gao, Lili Tan, Zheng Ma, Peng Ni, Min Zhou, Di Na. Application Potential of Mg-Zn-Nd Alloy as a Gastrointestinal Anastomosis Nail Material [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 609-620. |
[9] | Sujie Zhang, Xiaohua Min, Yada Li, Weiqiang Wang, Ping Li, Mingjia Li. Effects of Deformation and Phase Transformation Microstructures on Springback Behavior and Biocompatibility in β-Type Ti-15Mo Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 621-635. |
[10] | Qi-Ming Wang, Yan-Jie Zhang, Dong Han, Xiao-Wu Li. Effect of Short-Range Ordering on the Strength-Ductility Synergy of Fine-Grained Cu-Mn Alloys at Different Temperatures [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 651-661. |
[11] | H. R. Rezaei Ashtiani, A. A. Shayanpoor. Effect of Initial Grain Size on the Hot Deformation Behavior and Microstructural Evolution of Pure Copper [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 662-678. |
[12] | K. J. Tan, J. J. Liang, X. G. Wang, X. P. Tao, J. Gong, C. Sun, Y. Z. Zhou, X. F. Sun. Oxidation Performance and Interdiffusion Behaviour of two MCrAlY Coatings on a Fourth-Generation Single-Crystal Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 679-692. |
[13] | W. B. Shi, Y. M. Liu, W. H. Li, T. Li, H. Lei, J. Gong, C. Sun. Microstructure and Properties of WB2/Cr Multilayer Films with Different Bilayer Numbers Deposited by Magnetron Sputtering [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 693-702. |
[14] | Yujian Wang, Shuo Chu, Zhijun Wang, Junjie Li, Jincheng Wang. On Ti6Al4V Microsegregation in Electron Beam Additive Manufacturing with Multiphase-Field Simulation Coupled with Thermodynamic Data [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 425-438. |
[15] | Ling Zhang, Wen-He Liao, Ting-Ting Liu, Hui-Liang Wei, Chang-Chun Zhang. In Situ Elimination of Pores During Laser Powder Bed Fusion of Ti-6.5Al-3.5Mo-l.5Zr-0.3Si Titanium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 439-452. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||