Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (4): 651-661.DOI: 10.1007/s40195-021-01257-7
Previous Articles Next Articles
Qi-Ming Wang1,3, Yan-Jie Zhang1,3, Dong Han1,3, Xiao-Wu Li1,2()
Received:
2021-03-15
Revised:
2021-04-06
Accepted:
2021-04-16
Online:
2021-05-25
Published:
2021-05-25
Contact:
Xiao-Wu Li
About author:
Xiao-Wu Li, xwli@mail.neu.edu.cnQi-Ming Wang, Yan-Jie Zhang, Dong Han, Xiao-Wu Li. Effect of Short-Range Ordering on the Strength-Ductility Synergy of Fine-Grained Cu-Mn Alloys at Different Temperatures[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 651-661.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 TEM images showing the microstructures of Cu-10 at%Mn a, b, Cu-15 at%Mn c, d, and Cu-20 at%Mn e, f alloys after one-pass ECAP. Note that, the grain refinement mechanism during one-pass ECAP is jointly undertaken by dislocation subdivision and SRO-stimulated twin fragmentation
Fig. 2 Optical microscope images showing the original microstructures of Cu-10 at%Mn a, Cu-15 at%Mn b, and Cu-20 at%Mn c alloys. Note that, the mean grain size of the three FG Cu-Mn alloys is almost the same
Fig. 3 Tensile behavior of Cu-Mn alloys with different Mn contents at room temperature: a engineering stress-strain curves; b work hardening rate curves. Note that, the strength of Cu-Mn alloys is improved without a loss of ductility with the increase in Mn content
Fig. 4 TEM images showing the typical microstructures in Cu-Mn alloys tensioned at room temperature: a, b Cu-10 at%Mn; c, d Cu-15 at%Mn; e, f Cu-20 at%Mn. Note that, the deformation microstructures are mainly manifested by a decrease in the size of dislocation cells
Fig. 5 Optical microscope images showing the microstructures of Cu-Mn alloys tensioned at 250 °C: a Cu-10 at%Mn; b Cu-15 at%Mn; c Cu-20 at%Mn. Note that, the average grain size of three FG Cu-Mn alloys still basically keeps unchanged even after tension to fracture at 250 °C
Fig. 6 Tensile behavior of Cu-Mn alloys with different Mn contents at 250 °C: a engineering stress-strain curves; b work hardening rate curves. Note that, the FG Cu-Mn alloys exhibit an excellent strength-ductility synergy and an abnormal multi-stage work hardening characteristic
Fig. 7 Variations in the ultimate tensile strength and uniform elongation with the Mn content for the FG Cu-Mn alloys at RT and 250 °C. Obviously, the FG Cu-Mn alloys exhibit a better strength-ductility synergy at 250 °C rather than RT
Fig. 8 TEM images showing the typical microstructures in Cu-Mn alloys tensioned at 250 °C: a, b Cu-10 at%Mn; c, d Cu-15 at%Mn; e, f Cu-20 at%Mn. Note that, the deformation microstructures transform from dislocation cells to planar slip bands and even to deformation twins with increasing Mn content
Fig. 9 Schematic diagram showing the effect of SRO on the mechanical behavior and deformation microstructures of fine-grained Cu-Mn alloys. At RT, the strength of the present FG Cu-Mn alloys is greatly improved without a loss of ductility with the increase in Mn content, resulting from a decrease in the size of dislocation cells. At 250 °C, the FG Cu-Mn alloys exhibit a superior strength-ductility synergy, originating from an obvious transformation in deformation microstructures from dislocation cells to planar slip bands and even to deformation twins with increasing Mn content
[1] |
K. Lu, Science 328, 319 (2010)
DOI PMID |
[2] |
R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, T.C. Lowe, J. Mater. Res. 17, 5 (2002)
DOI URL |
[3] |
A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, A. Yanagida, C.I.R.P. Ann, Manuf. Technol. 57, 716 (2008)
DOI URL |
[4] | L.X. Du, S.J. Yao, J. Hu, H.F. Lan, H. Xie, G.D. Wang, Acta Metall. Sin. -Engl. Lett. 27, 508 (2014) |
[5] |
R.Z. Valiev, T.G. Langdon, Prog. Mater. Sci. 51, 881 (2006)
DOI URL |
[6] | F.Y. Dong, P. Zhang, J.C. Pang, Q.Q. Duan, Y.B. Ren, K. Yang, Z.F. Zhang, Acta Metall. Sin. -Engl. Lett. 29, 140 (2016) |
[7] |
C. Xu, Z. Horita, T.G. Langdon, Acta Mater. 55, 203 (2007)
DOI URL |
[8] |
N. Tsuji, Y. Ito, Y. Saito, Y. Minamino, Scr. Mater. 47, 893 (2002)
DOI URL |
[9] |
L. Balogh, T. Ungar, Y.H. Zhao, Y.T. Zhu, Z. Horita, C. Xu, T.G. Langdon, Acta Mater. 56, 809 (2008)
DOI URL |
[10] |
S. Qu, X.H. An, H.J. Yang, C.X. Huang, G. Yang, Q.S. Zang, Z.G. Wang, S.D. Wu, Z.F. Zhang, Acta Mater. 57, 1586 (2009)
DOI URL |
[11] | C.C. Koch, D.G. Morris, K. Lu, A. Inoue, MRS Bull. 24, 54 (1999) |
[12] |
X.H. An, W.Z. Han, C.X. Huang, P. Zhang, G. Yang, S.D. Wu, Z.F. Zhang, Appl. Phys. Lett. 92, 201915 (2008)
DOI URL |
[13] |
C.X. Huang, W. Hu, G. Yang, Z.F. Zhang, S.D. Wu, Q.Y. Wang, G. Gottstein, Mater. Sci. Eng. A 556, 638 (2012)
DOI URL |
[14] |
Y.H. Zhao, X.Z. Liao, Z. Horita, T.G. Langdon, Y.T. Zhu, Mater. Sci. Eng. A 493, 123 (2008)
DOI URL |
[15] | K.Q. Li, Z.J. Zhang, L.L. Li, P. Zhang, J.B. Yang, Z.F. Zhang, Acta Metall. Sin. -Engl. Lett. 31, 873 (2018) |
[16] |
Y.T. Zhu, X.Z. Liao, X.L. Wu, Prog. Mater. Sci. 57, 1 (2012)
DOI URL |
[17] |
W. Pfeiler, Acta Metall. 36, 2417 (1988)
DOI URL |
[18] |
D. Han, Y.J. Zhang, X.W. Li, Acta Mater. 205, 116559 (2021)
DOI URL |
[19] | V. Gerold, H.P. Karnthaler, Acta Metall. 37, 2177 (1989) |
[20] |
Z.Y. Wang, D. Han, X.W. Li, Mater. Sci. Eng. A 679, 484 (2017)
DOI URL |
[21] |
Y. Wu, F. Zhang, X.Y. Yuan, H.L. Huang, X.C. Wen, Y.H. Wang, M.Y. Zhang, H.H. Wu, X.J. Liu, H. Wang, S.H. Jiang, Z.P. Lu, J. Mater. Sci. Technol. 62, 214 (2021)
DOI |
[22] |
D. Han, Z.Y. Wang, Y. Yan, F. Shi, X.W. Li, Scr. Mater. 133, 59 (2017)
DOI URL |
[23] |
D. Han, X.J. Guan, Y. Yan, F. Shi, X.W. Li, Mater. Sci. Eng. A 743, 745 (2019)
DOI URL |
[24] |
Y.J. Zhang, D. Han, X.W. Li, Scr. Mater. 178, 269 (2020)
DOI URL |
[25] |
S. Matsuo, L.M. Clarebrough, Acta Metall. 11, 1195 (1963)
DOI URL |
[26] |
Y. Wang, D. Han, X.W. Li, Sol. Stat. Phenom. 294, 104 (2019)
DOI URL |
[27] |
R. Reihsner, W. Pfeiler, J. Phys. Chem. Sol. 46, 1431 (1985)
DOI URL |
[28] |
Z.J. Zhang, Q.Q. Duan, X.H. An, S.D. Wu, G. Yang, Z.F. Zhang, Mater. Sci. Eng. A 528, 4259 (2011)
DOI URL |
[29] |
F. Dalla Torre, R. Lapovok, J. Sandlin, P.F. Thomson, C.H.J. Davies, E.V. Pereloma, Acta Mater. 52, 4819 (2004)
DOI URL |
[30] |
M.A. Meyers, O. Vöhringer, V.A. Lubarda, Acta Mater. 49, 4025 (2001)
DOI URL |
[31] |
W. Wei, L.W. Sheng, X.W. Kun, V.A. Igor, B.D. Qing, H. Jing, J. Alloy. Compd. 678, 506 (2016)
DOI URL |
[32] |
T. Steffens, C. Schwink, A. Korner, H.P. Karnthaler, Philos. Mag. A 56, 161 (1987)
DOI URL |
[33] | K. Nakajima, K. Numakura, Philos. Mag. 12, 361 (1965) |
[34] | P.C.J. Gallagher, Metall. Mater. Trans. B1, 2429 (1970) |
[35] |
Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, Acta Mater. 45, 4733 (1997)
DOI URL |
[36] |
Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, Acta Mater. 46, 3317 (1998)
DOI URL |
[37] |
N.R. Tao, K. Lu, Scr. Mater. 60, 1039 (2009)
DOI URL |
[38] |
T.H. Wille, W. Gieseke, C.H. Schwink, Acta Metall. 35, 2679 (1987)
DOI URL |
[39] |
F. Hamdi, S. Asgari, Scr. Mater. 62, 693 (2010)
DOI URL |
[40] |
C.L. Yang, Z.J. Zhang, T. Cai, P. Zhang, Z.F. Zhang, Sci. Rep. 5, 15532 (2015)
DOI PMID |
[41] | G.D. Hu, P. Wang, D.Z. Li, Y.Y. Li, Acta Metall. Sin. -Engl. Lett. 33, 1455 (2020) |
[42] |
H. Saka, Y. Sueki, T. Imura, Philos. Mag. A 37, 273 (1978)
DOI URL |
[43] | A. Portevin, F. Le Chatelier, Comp. Rend. Acad. Sci. Paris 176, 507 (1923) |
[44] |
P.G. McCormick, Acta Metall. 20, 351 (1972)
DOI URL |
[45] |
H.F. Jiang, Q.C. Zhang, X.D. Chen, Z.J. Chen, Z.Y. Jiang, X.P. Wu, J.H. Fan, Acta Mater. 55, 2219 (2007)
DOI URL |
[46] |
Y.N. Dastur, W.C. Leslie, Metall. Trans. A 12, 749 (1981)
DOI URL |
[47] |
S.H. Fu, Q.C. Zhang, Q. Hu, M. Gong, P.T. Cao, H.W. Liu, Sci. China Technol. Sci. 54, 1389 (2011)
DOI URL |
[48] |
S. Xu, X.Q. Wu, E.H. Han, W. Ke, J. Mater. Sci. 44, 2882 (2009)
DOI URL |
[49] |
A. Rohatgi, K.S. Vecchio, G.T. Gray, Metall. Mater. Trans. A 32, 135 (2001)
DOI URL |
[50] |
V. Shterner, I.B. Timokhina, H. Beladi, Mater. Sci. Eng. A 669, 437 (2016)
DOI URL |
[51] |
D. Han, J.X. He, X.J. Guan, Y.J. Zhang, X.W. Li, Metals 9, 151 (2019)
DOI URL |
[52] | G.I. Taylor, Proc. R. Soc. 145, 362 (1934) |
[53] |
M.D. Sangid, T. Ezaz, H. Sehitoglu, I.M. Robertson, Acta Mater. 59, 283 (2011)
DOI URL |
[54] |
O. Bouaziz, S. Allain, C. Scott, Scr. Mater. 58, 484 (2008)
DOI URL |
[1] | Wen-Ting Zhu, Jun-Jun Cui, Zhen-Ye Chen, Yang Zhao, Li-Qing Chen. Correlation of Microstructure Feature with Impact Fracture Behavior in a TMCP Processed High Strength Low Alloy Construction Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 527-536. |
[2] | Muhammad Rizwan, Junxia Lu, Fei Chen, Ruxia Chai, Rafi Ullah, Yuefei Zhang, Ze Zhang. Microstructure Evolution and Mechanical Behavior of Laser Melting Deposited TA15 Alloy at 500 °C under In-Situ Tension in SEM [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1201-1212. |
[3] | Jian-Bin Zhan, Yan-Jin Lu, Jin-Xin Lin. On the Martensitic Transformation Temperatures and Mechanical Properties of NiTi Alloy Manufactured by Selective Laser Melting: Effect of Remelting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1223-1233. |
[4] | Yu-Lin Cheng, Xiao-Jiao Zuo, Xiao-Guang Yuan, Hong-Jun Huang, Yi-Fan Zhang. Influence of DC Current on Corrosion Behaviour of Copper-Aluminium Composite Plates [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1142-1152. |
[5] | He Duan, Yi-Yin Shan, Ke Yang, Xian-Bo Shi, Wei Yan, Yi Ren. Effect of Rare Earth and Cooling Process on Microstructure and Mechanical Properties of an Ultra-Cleaned X80 Pipeline Steel [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 639-648. |
[6] | Long Xin, Yongming Han, Ligong Ling, Yonghao Lu, Tetsuo Shoji. Surface Oxidation and Subsurface Microstructure Evolution of Alloy 690TT Induced by Partial Slip Fretting Corrosion in High-Temperature Pure Water [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 543-554. |
[7] | Hongchi Ma, Baijie Zhao, Yi Fan, Kui Xiao, Jinbin Zhao, Xuequn Cheng, Xiaogang Li. Simultaneously Improving Mechanical Properties and Stress Corrosion Cracking Resistance of High-Strength Low-Alloy Steel via Finish Rolling within Non-recrystallization Temperature [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 565-578. |
[8] | Ping Deng, En-Hou Han, Qunjia Peng, Chen Sun. Corrosion Behavior and Mechanism of Irradiated 304 Nuclear Grade Stainless Steel in High-Temperature Water [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 174-186. |
[9] | Chengxu Wang, Wei Chen, Minghui Chen, Demin Chen, Fuhui Wang. Ni/AlN Composite Coating for Corrosion and Elements Interdiffusion Resistance in Molten Fluoride Salts System [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(12): 1704-1714. |
[10] | Yixing Wan, Jinyong Mo, Xin Wang, Zhibin Zhang, Baolong Shen, Xiubing Liang. Mechanical Properties and Phase Stability of WTaMoNbTi Refractory High-Entropy Alloy at Elevated Temperatures [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1585-1590. |
[11] | Xiaochao Liu, Yufeng Sun, Tomoya Nagira, Kohsaku Ushioda, Hidetoshi Fujii. Effect of Stacking Fault Energy on the Grain Structure Evolution of FCC Metals During Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 1001-1012. |
[12] | Yu-Ning Zan, Yang-Tao Zhou, Xiao-Nan Li, Guo-Nan Ma, Zhen-Yu Liu, Quan-Zhao Wang, Dong Wang, Bo-Lv Xiao, Zong-Yi Ma. Enhancing High-Temperature Strength and Thermal Stability of Al2O3/Al Composites by High-Temperature Pre-treatment of Ultrafine Al Powders [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 913-921. |
[13] | Hou-Long Liu, Ling-Ling Liu, Ming-Yu Ma, Li-Qing Chen. Influence of Finish Rolling Temperature on Microstructure and Mechanical Properties of a 19Cr1.5Mo0.5 W Ferritic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 991-1000. |
[14] | Ming He, Xian-Liang Li, Qing-Wei Wang, Qiang Wang, Zhi-Yuan Liu, Chong-Jun Wang. Influence Factors Analysis of Fe-C Alloy Blocking Layer in the Electromagnetic Induction-Controlled Automated Steel Teeming Technology [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 671-678. |
[15] | He Li, Yongsheng Liu, Yansong Liu, Kehui Hu, Zhigang Lu, Jingjing Liang. Influence of Sintering Temperature on Microstructure and Mechanical Properties of Al2O3 Ceramic via 3D Stereolithography [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 204-214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||