Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (4): 563-576.DOI: 10.1007/s40195-021-01284-4
Previous Articles Next Articles
Enobong Felix Daniel1,2, Junhua Dong1,2(), Xiaofang Li1,2, Ini-Ibehe Nabuk Etim3,5, Inime Ime Udoh4, Rongyao Ma1,2, Lei Chen1,2, Changgang Wang1,2(
)
Received:
2021-02-27
Revised:
2021-05-14
Accepted:
2021-05-28
Online:
2021-08-12
Published:
2021-08-12
Contact:
Junhua Dong,Changgang Wang
About author:
Changgang Wang, cgwang@imr.ac.cnEnobong Felix Daniel, Junhua Dong, Xiaofang Li, Ini-Ibehe Nabuk Etim, Inime Ime Udoh, Rongyao Ma, Lei Chen, Changgang Wang. Corrosion Behaviour of Carbon Steel Fasteners in Neutral Chloride Solution[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 563-576.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Schematic illustration of a threaded bolt and nut assembly, b vertical cross-section of the regions of interest immersed in the solution, c electrochemical set-up, d experimental model of the simulated bolt and nut assembly
Fig. 2 SEM micrographs of the contact surface (CCSE) at uncoupled condition with and without corrosion products after a, a' 1 day, b, b' 7 days, c, c' 28 days, respectively
Fig. 3 SEM micrographs of the exposed surface (BCSE) at uncoupled conditions with and without corrosion products after; a, a' 1 day, b, b' 7 days, c, c' 28 days, respectively
Fig. 5 Macroscopic images of a carbon steel bolt and nut assembly before immersion: a coupled bolt with nut, b uncoupled bolt, and after 28 days of immersion in 0.06 mol/L NaCl solution: c coupled bolt with nut, d uncoupled bolt, e region A exposed to the bulk solution, f region B (bolt and nut contact)
Fig. 6 X-ray diffraction patterns of corrosion products formed on the exposed surface of the carbon steel fastener after immersion in 0.06 mol/L NaCl solution for a 1 day, b 7 days, c 28 days
Fig. 7 X-ray diffraction patterns of corrosion products formed on the contact surface of the carbon steel fastener after immersion in 0.06 mol/L NaCl solution for a 1 day, b 7 days, c 28 days
Fig. 10 a Time-dependent variation in weight loss and corrosion rate for the CCSE and BCSE, b bilogarithmic plots of thickness loss versus immersion time CCSE and BCSE at uncoupled conditions
Fig. 12 Polarization curves showing the effect of coupling on the corrosion mechanism of test samples after a 1 day, b 28 days of immersion in the test solution
Test sample | Time (day) | - Ecouple (V vs Ag/AgCl) | icouple (μA/cm2) | CR (mm/y) |
---|---|---|---|---|
GCSE (Theoretical) | 1 | 0.709 | 0.768 | 0.01 |
28 | 0.649 | 2.181 | 0.03 | |
GCSE (Experimental) | 1 | 0.688 | 4.345 | 0.05 |
28 | 0.641 | 2.513 | 0.03 |
Table 1 Electrochemical and galvanic parameters of the simulated carbon steel fastener under coupled conditions with an equal-area ratio
Test sample | Time (day) | - Ecouple (V vs Ag/AgCl) | icouple (μA/cm2) | CR (mm/y) |
---|---|---|---|---|
GCSE (Theoretical) | 1 | 0.709 | 0.768 | 0.01 |
28 | 0.649 | 2.181 | 0.03 | |
GCSE (Experimental) | 1 | 0.688 | 4.345 | 0.05 |
28 | 0.641 | 2.513 | 0.03 |
Immersion time (day) | igA (μA/cm2) | idA (μA/cm2) | rd (mm/y) |
---|---|---|---|
1 | 5.28 | 10.56 | 0.12 |
3 | 5.17 | 10.33 | 0.12 |
5 | 4.21 | 8.41 | 0.10 |
7 | 3.24 | 6.49 | 0.08 |
14 | 4.29 | 8.58 | 0.10 |
21 | 2.49 | 4.98 | 0.06 |
28 | 1.09 | 2.20 | 0.03 |
Table 2 Calculated data for galvanic current density and dissolution rate obtained from ZRA measurement at an equal-area ratio
Immersion time (day) | igA (μA/cm2) | idA (μA/cm2) | rd (mm/y) |
---|---|---|---|
1 | 5.28 | 10.56 | 0.12 |
3 | 5.17 | 10.33 | 0.12 |
5 | 4.21 | 8.41 | 0.10 |
7 | 3.24 | 6.49 | 0.08 |
14 | 4.29 | 8.58 | 0.10 |
21 | 2.49 | 4.98 | 0.06 |
28 | 1.09 | 2.20 | 0.03 |
Immersion time (day) | Rs (Ω cm2) | Qc (Ω-1 cm-2 S-n) | nc | Rc (Ω cm2) | Qa (Ω-1 cm-2 S-n) | na | Ra (Ω cm2) | ZW (Ω-1 cm-2 S-0.5) |
---|---|---|---|---|---|---|---|---|
CCSE (Contact region) | ||||||||
1 | 411.5 | 3.30 × 10-4 | 0.81 | 386.5 | 4.81 × 10-4 | 0.85 | 4667 | - |
7 | 395.8 | 2.86 × 10-4 | 0.78 | 465.0 | 3.55 × 10-4 | 0.85 | 7328 | - |
14 | 425.8 | 2.45 × 10-4 | 0.78 | 541.4 | 3.00 × 10-4 | 0.85 | 10,090 | - |
28 | 437.9 | 1.90 × 10-4 | 0.73 | 842.3 | 2.39 × 10-4 | 0.87 | 12,610 | - |
BCSE (Exposed region) | ||||||||
1 | 25.9 | 2.30 × 10-2 | 0.72 | 20.3 | 1.63 × 10-2 | 0.91 | 198.1 | 3.92 × 10-1 |
7 | 26.3 | 1.77 × 10-2 | 0.81 | 4.6 | 2.41 × 10-2 | 0.97 | 609.6 | 5.49 × 10-2 |
14 | 30.8 | 3.45 × 10-2 | 0.87 | 8.6 | 1.89 × 10-2 | 0.80 | 933.4 | - |
28 | 38.1 | 2.52 × 10-2 | 1.00 | 38.69 | 1.91 × 10-2 | 0.77 | 1040.0 | - |
Table 3 Electrochemical parameters obtained from the fitting of EIS data for the carbon steel samples in 0.06 mol/L NaCl solution under uncoupled condition
Immersion time (day) | Rs (Ω cm2) | Qc (Ω-1 cm-2 S-n) | nc | Rc (Ω cm2) | Qa (Ω-1 cm-2 S-n) | na | Ra (Ω cm2) | ZW (Ω-1 cm-2 S-0.5) |
---|---|---|---|---|---|---|---|---|
CCSE (Contact region) | ||||||||
1 | 411.5 | 3.30 × 10-4 | 0.81 | 386.5 | 4.81 × 10-4 | 0.85 | 4667 | - |
7 | 395.8 | 2.86 × 10-4 | 0.78 | 465.0 | 3.55 × 10-4 | 0.85 | 7328 | - |
14 | 425.8 | 2.45 × 10-4 | 0.78 | 541.4 | 3.00 × 10-4 | 0.85 | 10,090 | - |
28 | 437.9 | 1.90 × 10-4 | 0.73 | 842.3 | 2.39 × 10-4 | 0.87 | 12,610 | - |
BCSE (Exposed region) | ||||||||
1 | 25.9 | 2.30 × 10-2 | 0.72 | 20.3 | 1.63 × 10-2 | 0.91 | 198.1 | 3.92 × 10-1 |
7 | 26.3 | 1.77 × 10-2 | 0.81 | 4.6 | 2.41 × 10-2 | 0.97 | 609.6 | 5.49 × 10-2 |
14 | 30.8 | 3.45 × 10-2 | 0.87 | 8.6 | 1.89 × 10-2 | 0.80 | 933.4 | - |
28 | 38.1 | 2.52 × 10-2 | 1.00 | 38.69 | 1.91 × 10-2 | 0.77 | 1040.0 | - |
Immersion time (day) | Rs (Ω cm2) | Qc (Ω-1 cm-2 S-n) | na | Rc (Ω cm2) | Qa (Ω-1 cm-2 S-n) | na | Ra (Ω cm2) |
---|---|---|---|---|---|---|---|
1 | 21.20 | 5.87 × 10-4 | 0.78 | 34.41 | 2.48 × 10-4 | 0.82 | 1370 |
7 | 24.80 | 1.15 × 10-3 | 0.78 | 58.6 | 1.14 × 10-3 | 0.77 | 948.0 |
14 | 37.69 | 1.87 × 10-3 | 1.00 | 28.38 | 3.36 × 10-4 | 0.74 | 924.3 |
28 | 40.24 | 1.55 × 10-3 | 0.80 | 11.01 | 9.18 × 10-4 | 0.72 | 901.1 |
Table 4 Electrochemical parameters obtained from the fitting of EIS data for the carbon steel sample (GCSE) in 0.06 mol/L NaCl solution under coupled condition
Immersion time (day) | Rs (Ω cm2) | Qc (Ω-1 cm-2 S-n) | na | Rc (Ω cm2) | Qa (Ω-1 cm-2 S-n) | na | Ra (Ω cm2) |
---|---|---|---|---|---|---|---|
1 | 21.20 | 5.87 × 10-4 | 0.78 | 34.41 | 2.48 × 10-4 | 0.82 | 1370 |
7 | 24.80 | 1.15 × 10-3 | 0.78 | 58.6 | 1.14 × 10-3 | 0.77 | 948.0 |
14 | 37.69 | 1.87 × 10-3 | 1.00 | 28.38 | 3.36 × 10-4 | 0.74 | 924.3 |
28 | 40.24 | 1.55 × 10-3 | 0.80 | 11.01 | 9.18 × 10-4 | 0.72 | 901.1 |
[1] |
N. Hosoya, T. Niikura, S. Hashimura, I. Kajiwara, F. Giorgio- Serchi, Measurement 162, 107914 (2020)
DOI URL |
[2] | R.W. Revie, H.H. Uhlig, Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering, 4th edn. (John Wiley & Sons Inc, New Jersey, 2008) |
[3] |
F. Elshawesh, K. Abusowa, H. Mahfud, H. Ezuber, J. Fail. Anal. Prev. 8, 1 (2008)
DOI URL |
[4] | M. Hagarová, D. Jakubéczyová, G. Baranová, R. Šimko, Mater. Sci. Forum 960, 1 (2019) |
[5] | E. McCafferty, J. Electrochem. Soc. 121, 8 (1974) |
[6] | M.H. Al-sherrawi, E.M. Edaan, L. Sotnik, Int. J. Civ. Eng. Technol. 9, 6 (2018) |
[7] |
T. Meikle, S.C. Tadolini, B.A. Sainsbury, J. Bolton, Int. J. Min. Sci. Technol. 27, 1 (2017)
DOI URL |
[8] | R. Radouani, Y. Echcharqy, M. Essahli, Int. J. Corros. 2017, 1(2017) |
[9] | N. Aziz, P. Craig, J. Nemcik, F. Hai, Min. Technol. 123, 2 (2014) |
[10] |
A. El-amiri, A. Saifi, H. Halloua, A. Obbadi, Procedia Struct. Integr. 5, 1065 (2017)
DOI URL |
[11] |
J.K. Shah, H. Braga, A. Mukherjee, B. Uy, Eng. Fail. Anal. 102, 7 (2019)
DOI URL |
[12] | X. Yang, L. Zhang, S. Zhang, K. Zhou, M. Li, Q. He, J. Wang, S. Wu, H. Yang, Int. J. Electrochem. Sci. 16, 15015 (2021) |
[13] | H. Liu, J. Wei, J. Dong, Y. Zhou, Y. Chen, Y. Wu, S.D. Babu, A.J. Umoh, W. Ke, J. Mater. Sci. Technol. 84, 234 (2021) |
[14] | W. Emori, R.H. Zhang, P.C. Okafor, X.W. Zheng, T. He, K. Wei, X.Z. Lin, C.R. Cheng, Colloid Surf. A Physicochem. Eng. Asp. A 590, 124534 (2020) |
[15] | X.Y. Wu, J.K. Sun, J.M. Wang, Y.M. Jiang, J. Li, Acta Metall. Sin. -Engl. Lett. 32, 10 (2019) |
[16] | ASTM G102-89, Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements. (ASTM International, West Conshohocken, 1999) |
[17] | R.A. Antunes, R.U. Ichikawa, L.G. Martinez, I. Costa, Int. J. Corros. 2014, 1(2014) |
[18] |
G.D. Song, S.H. Jeon, Y.H. Son, J.G. Kim, D.H. Hur, Corros. Sci. 131, 71 (2018)
DOI URL |
[19] |
P. Refait, A.M. Grolleau, M. Jeannin, E. François, R. Sabot, Corros. Sci. 111, 583 (2016)
DOI URL |
[20] |
J. Dong, E. Han, W. Ke, Sci. Technol. Adv. Mater. 8, 559 (2007)
DOI URL |
[21] |
P. Refait, A.M. Grolleau, M. Jeannin, E. François, R. Sabot, Corros. Sci. 130, 76 (2018)
DOI URL |
[22] |
Y. Zou, J. Wang, Q. Bai, L.L. Zhang, X. Peng, X.F. Kong, Corros. Sci. 57, 202 (2012)
DOI URL |
[23] | G.D. Eyu, G. Will, W. Dekkers, J. MacLeod, Mater. Basel. 748, 1 (2016) |
[24] | Q. Shi, L. Shun, Z. Luo, X. Teng, X. Jing, X. Liu, J. Hui, W. Wen, B. Hu, Acta Metall. Sin. -Engl. Lett. 32, 8 (2019) |
[25] |
Y. Song, G. Jiang, Y. Chen, P. Zhao, Y. Tian, Sci. Rep. 7, 1 (2017)
DOI URL |
[26] | X. Lei, F. Yun, X. Chen, J. Xi, Z. De Yuan, L. Xuan, X. Liu, X. Jian, Acta Metall. Sin. -Engl. Lett. 33, 11 (2020) |
[27] | J. Wei, C. Gang, W. Xin, W. Xin, M. Xiao, Y. He, J. Hua, D. Wei, Acta Metall. Sin. -Engl. Lett. 32, 7 (2019) |
[28] |
E.M. Sherif, Molecules 19, 9962 (2014)
DOI URL |
[29] | M.K. Sawford, B.G. Ateya, A.M. Abdullah, H.W. Pickering, J. Electrochem. Soc. 149, 6 (2002) |
[30] |
G.A. Zhang, N. Yu, L.Y. Yang, X.P. Guo, Corros. Sci. 86, 202 (2014)
DOI URL |
[31] |
M. Romanoff, Anti-Corros. Methods Mater. 5, 1 (1958)
DOI URL |
[32] | Y. Ma, Y. Li, F. Wang, Corros. Sci. 51, 5 (2009) |
[33] | E. Bardal, Corrosion and Protection (Springer, London, 2004) |
[34] | A. Atkinson, J. Corish, N.A.T.O.A.S.I. Ser, Ser. B Phys. 97, 477 (1983) |
[35] | S.H. Jeon, G.D. Song, D.H. Hur, Metals Basel. 5, 4 (2015) |
[36] | L. Shi, X. Yang, Y. Song, D. Liu, K. Dong, D. Shan, E.H. Han, J. Mater. Sci. Technol. 35, 9 (2019) |
[37] | F. Mansfeld, Corrosion 27, 10 (1971) |
[38] | Z. Ahmad, Principles of Corrosion Engineering and Corrosion Control (Elsevier, Oxford, 2006) |
[39] | F. Mansfeld, D. Henisternberg, J.V. Kenkel, Corrosion 30, 10 (1974) |
[40] |
D. Prayitno, M. Irsyad, Sinergi 22, 1 (2018)
DOI URL |
[41] |
I.N. Etim, J. Dong, J. Wei, C. Nan, D.B. Pokharel, A.J. Umoh, D. Xu, M. Su, W. Ke, J. Mater. Sci. Technol. 64, 126 (2021)
DOI URL |
[42] |
X. Zhou, H. Yang, F. Wang, Corros. Sci. 54, 1 (2012)
DOI URL |
[43] | L. Wu, D. Guo, M. Li, J.M. Joseph, J.J. Noël, P.G. Keech, J.C. Wren, J. Electrochem. Soc. 164, 9 (2017) |
[44] |
I.N. Etim, J. Dong, J. Wei, C. Nan, E.F. Daniel, D.B. Subedi, D. Xu, A.P. Yadav, M. Su, W. Ke, Constr. Build. Mater. 257, 119047 (2020)
DOI URL |
[45] | F. Xue, X. Wei, J. Dong, I.N. Etim, C. Wang, W. Ke, J. Mater. Sci. Technol. 34, 8 (2018) |
[46] | I.I. Udoh, H. Shi, F. Liu, E. Han, J. Electrochem. Soc. 166, 6 (2019) |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||