Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (4): 662-678.DOI: 10.1007/s40195-021-01346-7
Previous Articles Next Articles
H. R. Rezaei Ashtiani1(), A. A. Shayanpoor1
Received:
2021-06-27
Revised:
2021-08-23
Accepted:
2021-09-17
Online:
2022-04-10
Published:
2022-04-10
Contact:
H. R. Rezaei Ashtiani
About author:
H. R. Rezaei Ashtiani, hr_rezaei@arakut.ac.ir; hrr.Ashtiani@gmail.comH. R. Rezaei Ashtiani, A. A. Shayanpoor. Effect of Initial Grain Size on the Hot Deformation Behavior and Microstructural Evolution of Pure Copper[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 662-678.
Add to citation manager EndNote|Ris|BibTeX
Si | Sn | Ag | Al | Fe | Zn | Cu |
---|---|---|---|---|---|---|
0.001 | 0.0147 | 0.0022 | 0.0173 | 0.0183 | 0.001 | 99.92 |
Table 1 Chemical composition (wt.%) of investigated pure copper
Si | Sn | Ag | Al | Fe | Zn | Cu |
---|---|---|---|---|---|---|
0.001 | 0.0147 | 0.0022 | 0.0173 | 0.0183 | 0.001 | 99.92 |
Fig. 1 Schematic of annealing heat treatment used for generation of two different grain sizes of specimens and thermo-mechanical conditions of hot compression test after annealing
Fig. 2 Microstructures of annealed copper with different cooling methods of a air-cooled (with an average grain size of 50 μm), b furnace cooled (with an average grain size of 20 μm) copper
Fig. 3 True stress-strain curves of pure copper at various strain rates, IGS, and deformation temperatures of a 673 K, b 773 K, c 873 K, d 973 K, e 1073 K
Fig. 4 Influences of IGS and Zener-Hollman (Z) parameter (strain rate and temperature) on the dominant deformation mechanism and flow stress behavior of pure copper
Fig. 14 Microstructures of the central part of the deformed sample at 673 K and 0.001 ${\text{s}}^{ - 1}$ and the strain of 0.6 with IGS a 20 μm and b 50 μm
Fig. 15 Microstructures of the hot deformed samples with IGS of a 20 μm, b 50 μm at 1073 K and 0.001 ${\text{s}}^{ - 1}$ and samples with IGS of c 20 μm and d 50 μm at 773 K and 0.001 ${\text{s}}^{ - 1}$
Fig. 17 Microstructures of the deformed samples with IGS of a 20 μm, b 50 μm at 973 K and 0.1 ${\text{s}}^{ - 1}$ and samples with IGS of c 20 μm and d 50 μm at 973 K and 0.001 ${\text{s}}^{ - 1}$
Fig. 19 Relationship between $\ln \left\{ {\ln \left[ {1/\left( {1 - X_{{{\text{DRX}}}} } \right)} \right]} \right\}$ and $\ln \left[ {\left( {\varepsilon - \varepsilon_{{\text{c}}} } \right)/\varepsilon_{{\text{p}}} } \right]$ at different strain rates and temperatures for determination slope n and intercept k for IGS of a 20, b 50 μm
Fig. 20 Volume fraction of DRX as a function of strain at different strain rates and deformation temperatures of a 673 K, b 773 K, c 873 K, d 973 K, e 1073 K
[1] |
W.H. Tian, A.L. Fan, H.Y. Gao, J. Luo, Z. Wang, Mater. Sci. Eng. A 350, 160 (2003)
DOI URL |
[2] |
J.Y. Yang, W.J. Kim, J. Mater. Res. Technol. 9, 960 (2020)
DOI URL |
[3] |
T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog. Mater. Sci. 60, 130 (2014)
DOI URL |
[4] |
S. Sakui, T. Sakai, K. Takeishi, Trans. Iron Steel Inst. Jpn. 17, 718 (1977)
DOI URL |
[5] | H.J. McQueen, J.J. Jonas, Recovery and Recrystallization during High Temperature Deformation, in Plastic Deformation of Materials. ed. by R.J. Arsenault (Elsevier, Amsterdam, 1975), pp. 393-493 |
[6] |
Y. Liu, W. Xiong, Q. Yang, J.W. Zeng, W. Zhu, G. Sunkulp, J. Mater. Eng. Perform. 27, 1812 (2018)
DOI URL |
[7] | S.H. Huang, D.Y. Shu, C.K. Hu, S.F. Zhu, Trans. Nonferrous Met. Soc. China (Engl. Ed.) 26, 1044 (2016) |
[8] |
Y.C. Lin, X.Y. Wu, X.M. Chen, J. Chen, D.X. Wen, J.L. Zhang, L.T. Li, J. Alloys Compd. 640, 101 (2015)
DOI URL |
[9] |
G. Liu, W. Xie, A. Hadadzadeh, G. Wei, Z. Ma, J. Liu, Y. Yang, W. Xie, X. Peng, M. Wells, J. Alloys Compd. 766, 460 (2018)
DOI URL |
[10] |
B. Song, N. Guo, T. Liu, Q.S. Yang, Mater. Des. 62, 352 (2014)
DOI URL |
[11] |
F.Z. Hassani, M. Ketabchi, M.T. Hassani, J. Mater. Sci. 46, 7689 (2011)
DOI URL |
[12] |
R. Gehrmann, M.M. Frommert, G. Gottstein, Mater. Sci. Eng. A 395, 338 (2005)
DOI URL |
[13] |
F. Guo, D. Zhang, X. Fan, J. Li, L. Jiang, F. Pan, Mater. Sci. Eng. A 655, 92 (2016)
DOI URL |
[14] |
Y.T. Zhu, X.Z. Liao, X.L. Wu, J. Narayan, J. Mater. Sci. 48, 4467 (2013)
DOI URL |
[15] |
C.H. Park, C.S. Oh, S. Kim, Mater. Sci. Eng. A 542, 127 (2012)
DOI URL |
[16] |
A. Berger, P.J. Wilbrandt, F. Ernst, U. Klement, P. Haasen, Prog. Mater. Sci. 32, 1 (1988)
DOI URL |
[17] |
S.W. Wang, H.W. Song, Y. Chen, S.H. Zhang, H.H. Li, Acta Metall. Sin. (Engl. Lett.) 33, 1618 (2020)
DOI URL |
[18] |
Y.H. Zhao, Z. Horita, T.G. Langdon, Y.T. Zhu, Mater. Sci. Eng. A 474, 342 (2008)
DOI URL |
[19] |
Y.T. Zhu, X.Z. Liao, X.L. Wu, Prog. Mater. Sci. 57, 1 (2012)
DOI URL |
[20] |
X.J. Wang, X.J. Sun, C. Song, H. Chen, S. Tong, W. Han, F. Pan, Acta Metall. Sin. (Engl. Lett.) 32, 746 (2019)
DOI URL |
[21] |
M.A. Meyers, U.R. Andrade, A.H. Chokshi, Metall. Mater. Trans. A 26, 2881 (1995)
DOI URL |
[22] |
Q. Yang, M. Ma, Y. Tan, S. Xiang, F. Zhao, Y. Liang, Metals (Basel) 9, 891 (2019)
DOI URL |
[23] |
Y. Yang, Z. Zhang, X. Li, Q. Wang, Y. Zhang, Mater. Des. 51, 592 (2013)
DOI URL |
[24] | H. Ahmadi, H.R. Rezaei Ashtiani, M. Heidari, Mater. Today Commun. 25, 101528 (2020) |
[25] |
H.R.R. Ashtiani, A.A. Shayanpoor, Trans. Nonferrous Met. Soc. China 31, 345 (2021)
DOI URL |
[26] |
A.M. Wusatowska-Sarnek, H. Miura, T. Sakai, Mater. Sci. Eng. A 323, 177 (2002)
DOI URL |
[27] |
M.A. Meyers, O. Vöhringer, V.A. Lubarda, Acta Mater. 49, 4025 (2001)
DOI URL |
[28] |
G. Liang, Y. Ali, G. You, M.X. Zhang, Materialia 3, 113 (2018)
DOI URL |
[29] | Y. Ali, G. You, F. Pan, M.X. Zhang, Mater. Trans. A Phys. Metall. Mater. Sci. 48, 474 (2017) |
[30] |
J. Dai, M.A. Easton, M. Zhang, D. Qiu, X. Xiong, W. Liu, G. Wu, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 45, 4665 (2014)
DOI URL |
[31] |
H. Miura, M. Ozama, R. Mogawa, T. Sakai, Scr. Mater. 48, 1501 (2003)
DOI URL |
[32] |
H. Beladi, P. Cizek, P.D. Hodgson, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 40, 1175 (2009)
DOI URL |
[33] |
H. Mirzadeh, J.M. Cabrera, A. Najafizadeh, P.R. Calvillo, Mater. Sci. Eng. A 538, 236 (2012)
DOI URL |
[34] |
P.D. Littlewood, T.B. Britton, A.J. Wilkinson, Acta Mater. 59, 6489 (2011)
DOI URL |
[35] |
H.R. Rezaei Ashtiani, P. Shahsavari, A.J. Wilkinson, Trans. Nonferrous Met. Soc. China 30, 2927 (2020)
DOI URL |
[36] | B. Verlinden, J. Driver, I. Samajdar, R. Doherty, Thermo-Mechanical Processing of Metallic Materials, n.d. |
[37] |
R. Ding, Z.X. Guo, Acta Mater. 49, 3163 (2001)
DOI URL |
[38] |
Y.Q. Jiang, Y.C. Lin, G.Q. Wang, G.D. Pang, M.S. Chen, Z.C. Huang, J. Alloys Compd. 870, 159534 (2021)
DOI URL |
[39] | H.J. Frost, M.F. Ashby, Ashby, Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon press, Oxford, 1982) |
[40] |
M.R. Barnett, Z. Keshavarz, A.G. Beer, D. Atwell, Acta Mater. 52, 5093 (2004)
DOI URL |
[41] | H.R. Rezaei Ashtiani, A.A. Shayanpoor, Met. Mater. Int. (2021). https://doi.org/10.1007/s12540-020-00943-y |
[42] |
T. Hirata, T. Osa, H. Hosokawa, K. Higashi, Mater. Trans. 43, 2385 (2002)
DOI URL |
[43] |
H.R. Rezaei Ashtiani, M.H. Parsa, H. Bisadi, Mater. Des. 42, 478 (2012)
DOI URL |
[44] |
D. Feng, X.M. Zhang, S.D. Liu, Y.L. Deng, Mater. Sci. Eng. A 608, 63 (2014)
DOI URL |
[45] |
G. Wang, H. Peng, C. Zhang, S. Wang, Y. Wen, Smart Mater. Struct. 25, 75013 (2016)
DOI URL |
[46] |
F. Chen, H. Wang, H. Zhu, H. Zhu, F. Ren, Z. Cui, J. Manuf. Process. 38, 223 (2019)
DOI |
[47] | H.R. Rezaei Ashtiani, A.A. Shayanpoor, Mater. Today Commun. 28, 102652 (2021) |
[48] |
A.A.S. Mohammed, E.A. El-Danaf, A.K.A. Radwan, Mater. Sci. Eng. A 457, 373 (2007)
DOI URL |
[49] |
S.A. Sani, G.R. Ebrahimi, H. Vafaeenezhad A.R. Kiani-Rashid, J. Magnes. Alloy. 6, 134 (2018)
DOI URL |
[50] |
N.R. Jaladurgam, A.K. Kanjarla, Mater. Sci. Eng. A 712, 240 (2018)
DOI URL |
[51] |
H. Matsumoto, V. Velay, J. Alloys Compd. 708, 404 (2017)
DOI URL |
[52] | X.Y. Yang, M. Sanada, H. Miura, T. Sakai, Mater. Sci. Forum 488-489, 223(2005) |
[53] |
N. Narita, J. Takamura, Philos. Mag. 29, 1001 (1974)
DOI URL |
[54] |
P. Zhou, J.Q. Zhou, Z.X. Ye, E. Jiang, W.B. Hu, H.L. Le, Strength Mater. 48, 69 (2016)
DOI URL |
[55] |
Y. Chen, L. Jin, J. Dong, Z. Zhang, F. Wang, Mater. Charact. 118, 363 (2016)
DOI URL |
[56] |
P. Nnamchi, A. Younes, S. González, Intermetallics 105, 61 (2019)
DOI |
[57] |
B. Wu, J. Li, L. Liu, X. Chen, J. Tan, J. Song, M. Rashad, F. Pan, Acta Metall. Sin. (Engl. Lett.) 34, 606 (2021)
DOI URL |
[58] |
P. Zhou, Q.X. Ma, Acta Metall. Sin. (Engl. Lett.) 30, 907 (2017)
DOI URL |
[59] |
C. Wu, S. Han, Acta Metall. Sin. (Engl. Lett.) 31, 963 (2018)
DOI URL |
[60] |
D.X. Wen, Y.C. Lin, Y. Zhou, Vacuum 141, 316 (2017)
DOI URL |
[61] |
M.S. Chen, Y.C. Lin, K.K. Li, Y. Zhou, Comput. Mater. Sci. 122, 150 (2016)
DOI URL |
[62] |
A.N. Behera, A. Chaudhuri, R. Kapoor, J.K. Chakravartty, S. Suwas, Mater. Des. 92, 750 (2016)
DOI URL |
[63] |
M.S. Chen, Y.C. Lin, X.S. Ma, Mater. Sci. Eng. A 556, 260 (2012)
DOI URL |
[64] |
A. Dehghan-Manshadi, P.D. Hodgson, Metall. Mater. Trans. A 39, 2830 (2008)
DOI URL |
[65] |
W.X. Wu, L. Jin, J. Dong, Z.Y. Zhang, W.J. Ding, Mater. Sci. Eng. A 556, 519 (2012)
DOI URL |
[66] |
S. Aliakbari Sani, G.R. Ebrahimi A.R. Kiani Rashid, J. Magnes. Alloy. 4, 104 (2016)
DOI URL |
[1] | Wen-Ting Zhu, Jun-Jun Cui, Zhen-Ye Chen, Yang Zhao, Li-Qing Chen. Correlation of Microstructure Feature with Impact Fracture Behavior in a TMCP Processed High Strength Low Alloy Construction Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 527-536. |
[2] | Zohreh Yazdani, Mohammad Reza Toroghinejad, Hossein Edris. Effects of Annealing on the Fabrication of Al-TiAl3 Nanocomposites Before and After Accumulative Roll Bonding and Evaluation of Strengthening Mechanisms [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 636-650. |
[3] | Zijian Yu, Xi Xu, Baotian Du, Kang Shi, Ke Liu, Shubo Li, Xiuzhu Han, Tao Xiao, Wenbo Du. Precipitate Characteristics and Mechanical Performance of Cast Mg-6RE-1Zn-xCa-0.3Zr (x = 0 and 0.4 wt%) Alloys [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 596-608. |
[4] | Sujie Zhang, Xiaohua Min, Yada Li, Weiqiang Wang, Ping Li, Mingjia Li. Effects of Deformation and Phase Transformation Microstructures on Springback Behavior and Biocompatibility in β-Type Ti-15Mo Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 621-635. |
[5] | Yueling Guo, Qifei Han, Jinlong Hu, Xinghai Yang, Pengcheng Mao, Junsheng Wang, Shaobo Sun, Zhi He, Jiping Lu, Changmeng Liu. Comparative Study on Wire-Arc Additive Manufacturing and Conventional Casting of Al-Si Alloys: Porosity, Microstructure and Mechanical Property [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 475-485. |
[6] | Minbo Wang, Ruidi Li, Tiechui Yuan, Haiou Yang, Pengda Niu, Chao Chen. Microstructure and Mechanical Properties of Selective Laser Melted Al-2.51Mn-2.71Mg-0.55Sc-0.29Cu-0.31Zn Alloy Designed by Supersaturated Solid Solution [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 354-368. |
[7] | Pei Wang, Sijie Yu, Jaskarn Shergill, Anil Chaubey, Jürgen Eckert, Konda Gokuldoss Prashanth, Sergio Scudino. Selective Laser Melting of Al-7Si-0.5 Mg-0.5Cu: Effect of Heat Treatment on Microstructure Evolution, Mechanical Properties and Wear Resistance [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 389-396. |
[8] | Rong Xu, Ruidi Li, Tiechui Yuan, Hongbin Zhu, Ping Li. Microstructure and Mechanical Properties of TiC-Reinforced Al-Mg-Sc-Zr Composites Additively Manufactured by Laser Direct Energy Deposition [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 411-424. |
[9] | Li Hu, Mingao Li, Qiang Chen, Tao Zhou, Laixin Shi, Mingbo Yang. Dependence of Microstructure Evolution and Mechanical Properties on Loading Direction for AZ31 Magnesium Alloy Sheet with Non-basal Texture During In-Plane Uniaxial Tension [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 223-234. |
[10] | Li-Cheng Wu, Yan-Hui Li, Xing-Jie Jia, Ai-Na He, Wei Zhang. Effects of Ribbon Thickness on Structure and Soft Magnetic Properties of a High-Cu-Content FeBCuNb Nanocrystalline Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 235-242. |
[11] | Yanan Wang, Sansan Shuai, Chenglin Huang, Tao Jing, Chaoyue Chen, Tao Hu, Jiang Wang, Zhongming Ren. Revealing the Diversity of Dendritic Morphology Evolution During Solidification of Magnesium Alloys using Synchrotron X-ray Imaging: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 177-200. |
[12] | Liangyuan Wang, Lei Shen, Yongcun Li, Yuanjie Wang, Yu Xiao, Xingyi Zhang, Feng Xu, Xiaofang Hu. In situ SR-CT Experimental Study on the Directional Sintering of High-Temperature Superconductor YBCO Materials in the Microwave Fields [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 67-77. |
[13] | Yulong Zhu, Yu Cao, Rui Luo, Cunjian Liu, Hongshuang Di, Gang Shu, Guangjie Huang, Qing Liu. Orientation-Dependent Characteristics for Residual Grains during Hot Deformation of Nickel-Based Alloy 925 [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1296-1306. |
[14] | Mehran Dadkhah, Mohammad Hossein Mosallanejad, Luca Iuliano, Abdollah Saboori. A Comprehensive Overview on the Latest Progress in the Additive Manufacturing of Metal Matrix Composites: Potential, Challenges, and Feasible Solutions [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1173-1200. |
[15] | Wei Zhang, Zhi-Hong Dong, Hong-Wei Kang, Chen Yang, Yu-Jiang Xie, Mohamad Ebrahimnia, Xiao Peng. Enhancement of Strength-Ductility Balance of the Laser Melting Deposited 12CrNi2 Alloy Steel Via Multi-step Quenching Treatment [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1234-1244. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||