Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (12): 1695-1703.DOI: 10.1007/s40195-021-01232-2
Previous Articles Next Articles
Honglin Yan1,2, Zhiming Zhang1(), Jianqiu Wang1, Bright O. Okonkwo1,2, En-Hou Han1
Received:
2020-11-09
Revised:
2021-01-18
Accepted:
2021-01-26
Online:
2021-12-10
Published:
2021-12-10
Contact:
Zhiming Zhang
About author:
Zhiming Zhang zmzhang@imr.ac.cnHonglin Yan, Zhiming Zhang, Jianqiu Wang, Bright O. Okonkwo, En-Hou Han. Effects of MeV Fe Ions Irradiation on the Microstructure and Property of Nuclear Grade 304 Stainless Steel: Characterized by Positron Annihilation Spectroscopy, Transmission Electron Microscope and Nanoindentation[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(12): 1695-1703.
Add to citation manager EndNote|Ris|BibTeX
C | Cr | Ni | N | Mn | Si | S | P | Fe |
---|---|---|---|---|---|---|---|---|
0.053 | 18.45 | 8.30 | 0.057 | 1.59 | 0.47 | 0.004 | 0.022 | Bal. |
Table 1 Chemical composition of 304SS (wt%)
C | Cr | Ni | N | Mn | Si | S | P | Fe |
---|---|---|---|---|---|---|---|---|
0.053 | 18.45 | 8.30 | 0.057 | 1.59 | 0.47 | 0.004 | 0.022 | Bal. |
Fig. 2 Schematic diagram of S and W parameters in Doppler broadening of PAS. S represents the fractional area of the central portion of the peak, while W parameter is the fractional area of the extreme wings of the photo-peak
Fig. 7 Morphologies of the cross sections of the irradiated samples: a bright-field TEM image of 3.2 dpa sample, b morphology of irradiation-induced defects of 3.2 dpa sample, c bright-field TEM image of 16 dpa sample, d morphology of irradiation-induced defects of 16 dpa sample
Fig. 9 SEM micrographs of the all samples after indentation tests. Note that surface morphologies were different that grain boundaries were clear for unirradiated sample, while it became obscure for the irradiated samples
Fig. 10 Dependence of nanohardness of 304SS on the indentation depth of a unirradiated sample, b irradiated for 3.2 dpa, c irradiated for 16 dpa, d Hirr/Hunirr versus depth plot of all samples
304SS (dpa) | H0 (GPa) | h* (nm) | hcrit (nm) | ΔH0/H0 (irradiation hardening) |
---|---|---|---|---|
0 dpa | 3.01 | 101.4 | 200 | - |
3.2 dpa | 4.67 | 49.3 | 200 | 55% |
16 dpa | 5.16 | 17.8 | 200 | 71% |
Table 2 Nix-Gao model plot results
304SS (dpa) | H0 (GPa) | h* (nm) | hcrit (nm) | ΔH0/H0 (irradiation hardening) |
---|---|---|---|---|
0 dpa | 3.01 | 101.4 | 200 | - |
3.2 dpa | 4.67 | 49.3 | 200 | 55% |
16 dpa | 5.16 | 17.8 | 200 | 71% |
304SS (dpa) | H0 (GPa) | \(\Delta H_{v}\)(MPa) | \(\Delta \sigma_{y}\)(MPa) | \(\Delta \sigma_{y}^{\prime }\)(MPa) |
---|---|---|---|---|
0 | 3.01 | 0 | 0 | 0 |
3.2 | 4.67 | 156.9 | 475.3 | 1367.5 |
16 | 5.16 | 203.2 | 615.6 | 975.6 |
Table 3 Comparison of hardness and yield strength of all samples
304SS (dpa) | H0 (GPa) | \(\Delta H_{v}\)(MPa) | \(\Delta \sigma_{y}\)(MPa) | \(\Delta \sigma_{y}^{\prime }\)(MPa) |
---|---|---|---|---|
0 | 3.01 | 0 | 0 | 0 |
3.2 | 4.67 | 156.9 | 475.3 | 1367.5 |
16 | 5.16 | 203.2 | 615.6 | 975.6 |
[1] | W.M. Tian, Y.J. Ai, S.M. Li, N. Du, C. Ye, Acta Metall. -Engl.Lett. 28, 430(2015) |
[2] | S.J. Zinkle, G.S. Was, Acta Mater. 61, 735(2013) |
[3] | W.C. Dong, D.B. Gao, S.P. Lu, Acta Metall. -Engl. Lett. 32, 618(2018) |
[4] | M.N. Gussev, E. Cakmak, K.G. Field, J. Nucl. Mater. 504, 221(2018) |
[5] | G.S. Was, S.M. Bruemmer, J. Nucl. Mater. 216, 326(1994) |
[6] | A.B. Du, W. Feng, H.L. Ma, T. Liang, D.Q. Yuan, P. Fan, Q.L. Zhang, C. Huang, Acta Metall. -Engl. Lett. 30, 1049(2017) |
[7] | S.J. Zinkle, Phys. Plasmas 12, 058101 (2005) |
[8] | G.S. Was, J.T. Busby, Philos. Mag. 85, 443(2006) |
[9] | P. Scott, J. Nucl. Mater. 211, 101(1994) |
[10] | Z. Jiao, G.S. Was, J. Nucl. Mater. 382, 203(2008) |
[11] | P.L. Andresen, M.M. Morra, J. Nucl. Mater. 383, 97(2008) |
[12] | G.S. Was, Z. Jiao, E. Getto, K. Sun, A.M. Monterrosa, S.A. Maloy, O. Anderoglu, B.H. Sencer, M. Hackett, Scr. Mater. 88, 33(2014) |
[13] | G.S. Was, J. Mater. Res. 30, 1158(2015) |
[14] | R. Kasada, S. Konishi, K. Yabuuchi, S. Nogami, M. Ando, D. Hamaguchi, H. Tanigawa, Fusion Eng. Des. 89, 1637(2014) |
[15] | J. Gupta, J. Hure, B. Tanguy, L. Laffont, M.C. Lafont, E. Andrieu, J. Nucl. Mater. 476, 82(2016) |
[16] | G. S. Was, R. S. Averback. in Comprehensive Nuclear Materials (Elsevier Ltd, 2012), pp. 195. |
[17] | Z.J. Jiao, G. Was, T. Miura, K. Fukuya, J. Nucl. Mater. 452, 328 (2014) |
[18] | C.D. Hardie, S.G. Roberts, A.J. Bushby, J. Nucl. Mater. 462, 391 2015) |
[19] | P. Hosemann, D. Kiener, Y.Q. Wang, S.A. Maloy, J. Nucl. Mater. 425, 136(2012) |
[20] | S. Dannefaer, G.W. Dean, D.P. Kerr, B.G. Hogg, Phys. Rev. B 14, 2709 (1976) |
[21] | J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. Sect. B 268, 1818 (2010) |
[22] | R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, F.A. Garner, Nucl. Instrum. Methods Phys. Res. Sect. B 310, 75 (2013) |
[23] | S.J. Zinkle, L.L. Snead, Scr. Mater. 143, 154(2018) |
[24] | H.P. Zhu, Z.G. Wang, X. Gao, M.H. Cui, B.S. Li, J.R. Sun, C.F. Yao, K.F. Wei, T.L. Shen, L.L. Pang, Y.B. Zhu, Y.F. Li, J. Wang, P. Song, P. Zhang, X.Z. Cao, Nucl. Instrum. Methods Phys. Res. Sect. B 344, 5 (2015) |
[25] | C. Pokor, Y. Brechet, P. Dubuisson, J.P. Massoud, A. Barbu, J. Nucl. Mater. 326, 19(2004) |
[26] | W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564(2011) |
[27] | J. Algers, P. Sperr, W. Egger, G. Kögel, F.H.J. Maurer, Phys. Rev. B 67, 125404 (2003) |
[28] | A.P. Mills, R.J. Wilson, Phys. Rev. A 26, 490 (1982) |
[29] | J. Mákinen, A. Vehanen P. Hautojárvi H. Huomo J. Lahtinen R.M. Nieminen S. Valkealahti, Surf Sci. 175, 385(1986) |
[30] | D.T. Britton, P.C. Riceevans, J.H. Evans, Phil. Mag. Lett. 57, 165(1988) |
[31] | H. Zhu, Z.G. Wang, M.H. Cui, B.S. Li, X. Gao, J.R. Sun, C.F. Yao, K.F. Wei, T.L. Shen, L.L. Pang, Y.B. Zhu, Y.F. Li, J. Wang, E.Q. Xie, Appl. Surf. Sci. 326, 1(2015) |
[32] | Q. Xu, K. Sato, X.Z. Cao, P. Zhang, B.Y. Wang, T. Yoshiie, H. Watanabe, N. Yoshida, Nucl. Instrum. Methods Phys. Res. Sect. B 315, 146 (2013) |
[33] | X.B. Liu, R.S. Wang, J. Jiang, Y.C. Wu, C.H. Zhang, A. Ren, C.L. Xu, W.J. Qian, J. Nucl. Mater. 451, 249(2014) |
[34] | P.J. Maziasz, J. Nucl. Mater. 205, 118(1993) |
[35] | D.J. Edwards, E.P. Simonen, S.M. Bruemmer, J. Nucl. Mater. 317, 13(2003) |
[36] | Z.C. Zheng, Y.X. Yu, W.P. Zhang, Z.Y. Shen, F.F. Luo, L.P. Guo, Y.Y. Ren, R. Tang, Acta Metall. -Engl. Lett. 30, 89(2016) |
[37] | B.H. Sencer, G.M. Bond, M.L. Hamilton, F.A. Garner, S.A. Maloy, W.F. Sommer, J. Nucl. Mater. 296, 112(2001) |
[38] | J. Malaplate, B. Michaut, A.R. Laborne, T. Jourdan, F. Dalle, J. Ribis, B. Radiguet, F. Sefta, B. Decamps, J. Nucl. Mater. 517, 201(2019) |
[39] | E.H. Lee, Y. Lee, W.C. Oliver, L.K. Mansur, J. Mater. Res. 8, 377(2011) |
[40] | K. Yabuuchi, Y. Kuribayashi, S. Nogami, R. Kasada, A. Hasegawa, J. Nucl. Mater. 446, 142(2014) |
[41] | C.D. Hardie, S.G. Roberts, J. Nucl. Mater. 433, 174(2013) |
[42] | W.D. Nix, H.J. Gao. J. Mech. Phys. Solids 46, 411 (1998) |
[43] | R. Kasada, Y. Takayama, K. Yabuuchi, A. Kimura, Fusion Eng. Des. 86, 2658(2011) |
[44] | A. Lupinacci, K. Chen, Y. Li, M. Kunz, Z. Jiao, G.S. Was, M.D. Abad, A.M. Minor, P. Hosemann, J. Nucl. Mater. 458, 70(2015) |
[45] | J.T. Busby, M.C. Hash, G.S. Was, J. Nucl. Mater. 336, 267(2005) |
[46] | C. Pokor, Y. Brechet, P. Dubuisson, J.P. Massoud, X. Averty, J. Nucl. Mater. 326, 30(2004) |
[47] | A. K. Seeger, Report No. A/CONF. 15/P/998, 1959. |
[48] | A.S. Rao, Nucl. Eng. Des. 269, 78(2014) |
[49] | O. El-Atwani, J.S. Weaver, E. Esquivel, M. Efe, M.R. Chancey, Y.Q. Wang, S.A. Maloy, N. Mara, J. Nucl. Mater. 509, 276(2018) |
[1] | Hui-Hu Lu, Xing-Quan Shen, Wei Liang. Effect of Grain Size on the Precipitation Behaviour in Super-Ferritic Stainless Steels During a Long-Term Ageing [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1285-1295. |
[2] | Langlang Zhao, Shitong Wei, Dianbao Gao, Shanping Lu. Effect of Carbon Content on the Creep Rupture Properties and Microstructure of 316H Weld Metals [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 986-996. |
[3] | Chuanfeng Wu, Junmei Chen, Zhiyuan Yu, Hao Lu, Chun Yu, Jijin Xu. Ductility Anisotropy Induced by Ferrite in Direct Laser Deposited 17-4 PH Steel: Combined Microstructure and Dislocation Density Simulation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 765-776. |
[4] | Ying Han, Jiaqi Sun, Jiapeng Sun, Guoqing Zu, Weiwei Zhu, Xu Ran. High-Temperature Creep Behavior and Microstructural Evolution of a Cu-Nb Co-Alloyed Ferritic Heat-Resistant Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 789-801. |
[5] | Liwen Tan, Zhongwei Wang, Yanlong Ma. Tribocorrosion Behavior and Degradation Mechanism of 316L Stainless Steel in Typical Corrosive Media [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 813-824. |
[6] | Dong Wu, Shitong Wei, Shanping Lu. A Study of Microstructure and Mechanical Properties for the Autogenous Single-Pass Butt Weldment of a Ferritic/Martensitic Steel Using Gas Tungsten Arc Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 628-638. |
[7] | Sihan Chen, Tian Liang, Yangtao Zhou, Weiwei Xing, Chengwu Zheng, Yingche Ma, JinMing Wu, Guobin Li, Kui Liu. Phase Characterization and Formation Behavior in 6 wt% Si High-silicon Austenitic Stainless Steel during Isothermal Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 649-656. |
[8] | Hua-Zhen Jiang, Zheng-Yang Li, Tao Feng, Peng-Yue Wu, Qi-Sheng Chen, Yun-Long Feng, Long-Fei Chen, Jing-Yu Hou, He-Jian Xu. Effect of Process Parameters on Defects, Melt Pool Shape, Microstructure, and Tensile Behavior of 316L Stainless Steel Produced by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 495-510. |
[9] | Y. R. Ma, H. J. Yang, D. D. Ben, X. H. Shao, Y. Z. Tian, Q. Wang, Z. F. Zhang. Anisotropic Electroplastic Effects on the Mechanical Properties of a Nano-Lamellar Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 534-542. |
[10] | Mingxiao Guo, Junrong Tang, Tianzhen Gu, Can Peng, Qiaoxia Li, Chen Pan, Zhenyao Wang. Corrosion Behavior of 316L Stainless Steels Exposed to Salt Lake Atmosphere of Western China for 8 years [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 555-564. |
[11] | Ji-Jin Xu, Shuai Wang, Ze Chai, Chun Yu, Jun-Mei Chen, Hao Lu. Comparison of the Stress Corrosion Cracking Behaviour of AISI 304 Pipes Welded by TIG and LBW [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 579-589. |
[12] | Ping Deng, En-Hou Han, Qunjia Peng, Chen Sun. Corrosion Behavior and Mechanism of Irradiated 304 Nuclear Grade Stainless Steel in High-Temperature Water [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 174-186. |
[13] | Tong Zhang, Ying Han, Wen Wang, Yang Gao, Ying Song, Xu Ran. Influence of Aging Time on Microstructure and Corrosion Behavior of a Cu-Bearing 17Cr-1Si-0.5Nb Ferritic Heat-Resistant Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1289-1301. |
[14] | Hou-Long Liu, Ling-Ling Liu, Ming-Yu Ma, Li-Qing Chen. Influence of Finish Rolling Temperature on Microstructure and Mechanical Properties of a 19Cr1.5Mo0.5 W Ferritic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 991-1000. |
[15] | Feng Shi, Ruo-Han Gao, Xian-Jun Guan, Chun-Ming Liu, Xiao-Wu Li. Application of Grain Boundary Engineering to Improve Intergranular Corrosion Resistance in a Fe–Cr–Mn–Mo–N High-Nitrogen and Nickel-Free Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 789-798. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||