Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (6): 789-801.DOI: 10.1007/s40195-020-01175-0
Previous Articles Next Articles
Ying Han1,2(), Jiaqi Sun1,2, Jiapeng Sun3, Guoqing Zu1,2, Weiwei Zhu1,2, Xu Ran1,2(
)
Received:
2020-08-02
Revised:
2020-09-10
Accepted:
2020-09-26
Online:
2021-06-10
Published:
2021-05-31
Contact:
Ying Han,Xu Ran
About author:
Xu Ran. ranxu@ccut.edu.cnYing Han, Jiaqi Sun, Jiapeng Sun, Guoqing Zu, Weiwei Zhu, Xu Ran. High-Temperature Creep Behavior and Microstructural Evolution of a Cu-Nb Co-Alloyed Ferritic Heat-Resistant Stainless Steel[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 789-801.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 Microstructures of the specimen after creep deformation at 973 K and 50 MPa: a SEM image of the precipitates, and the insets show the typical precipitates and corresponding EDS results; b TEM image of the precipitates in the grain interior, and the insets indicate the SADP and EDS analyses of Cu- and Nb-rich Laves phase particles, respectively; c typical co-precipitation of Cu- and Nb-rich particles observed by TEM; d TEM image of the precipitates at the grain boundary
Fig. 4 Microstructures of the specimen after creep deformation at 1023 K and 50 MPa: a SEM image of the precipitates; b TEM image of the precipitates in the grain interior; c partially enlarged view in image b, and the insets show the SADP and EDS results for Cu- and Nb-rich phase particles, respectively
Fig. 5 Dislocation characteristics in the specimen after creep deformation at 1023 K and 50 MPa: a dislocation walls; b sub-grain boundaries; c interaction between precipitates and dislocations
Fig. 6 Microstructures of the specimen after creep deformation at 1123 K and 25 MPa: a SEM image of the precipitates; b TEM image of the precipitates in the grain interior; c TEM image of the precipitates at the grain boundary; d interactions between dislocations and precipitates
Fig. 9 a, b Typical creep curves of the experimental steel under different deformation conditions. c, d Creep rate curves corresponding to the images of a, b, respectively
Fig. 10 a Applied stress dependence of the minimum creep rate at all given temperatures. b Temperature dependence of the minimum creep rate at all given stresses
Assumed stress exponent | Temperature (K) | Threshold stress (MPa) | ${R}^{2}$ | Average true stress exponent | Average true activation energy (kJ mol-1) |
---|---|---|---|---|---|
3 | 973 | 36.5 | 0.97 | 2.7 | 196.1 |
1023 | 26.2 | ||||
1073 | 19.8 | ||||
1123 | 11.6 | ||||
4 | 973 | 26.0 | 0.98 | 3.9 | 288.3 |
1023 | 22.3 | ||||
1073 | 16.0 | ||||
1123 | 9.3 | ||||
5 | 973 | 15.4 | 0.99 | 4.9 | 375.5 |
1023 | 18.4 | ||||
1073 | 12.1 | ||||
1123 | 6.9 | ||||
6 | 973 | 4.7 | 0.99 | 5.9 | 460.5 |
1023 | 14.4 | ||||
1073 | 8.1 | ||||
1123 | 4.5 | ||||
7 | 973 | - 6.1 | 0.99 | - | - |
1023 | 10.3 | ||||
1073 | 4.2 | ||||
1123 | 2.0 | ||||
8 | 973 | - 16.8 | 0.99 | - | - |
1023 | 6.3 | ||||
1073 | 0.2 | ||||
1123 | - 0.4 |
Table 1 Calculated threshold stress and activation energy with assumed different stress exponents varying between 3 and 8
Assumed stress exponent | Temperature (K) | Threshold stress (MPa) | ${R}^{2}$ | Average true stress exponent | Average true activation energy (kJ mol-1) |
---|---|---|---|---|---|
3 | 973 | 36.5 | 0.97 | 2.7 | 196.1 |
1023 | 26.2 | ||||
1073 | 19.8 | ||||
1123 | 11.6 | ||||
4 | 973 | 26.0 | 0.98 | 3.9 | 288.3 |
1023 | 22.3 | ||||
1073 | 16.0 | ||||
1123 | 9.3 | ||||
5 | 973 | 15.4 | 0.99 | 4.9 | 375.5 |
1023 | 18.4 | ||||
1073 | 12.1 | ||||
1123 | 6.9 | ||||
6 | 973 | 4.7 | 0.99 | 5.9 | 460.5 |
1023 | 14.4 | ||||
1073 | 8.1 | ||||
1123 | 4.5 | ||||
7 | 973 | - 6.1 | 0.99 | - | - |
1023 | 10.3 | ||||
1073 | 4.2 | ||||
1123 | 2.0 | ||||
8 | 973 | - 16.8 | 0.99 | - | - |
1023 | 6.3 | ||||
1073 | 0.2 | ||||
1123 | - 0.4 |
Fig. 12 a Effective stress (σ-σth) dependence of the minimum creep rate at all given temperatures. b Temperature dependence of the minimum creep rate at all effective stresses
[1] |
H. Liu, L. Wei, M. Ma, J. Zheng, L. Chen, R.D.K. Misra, J. Mater. Res. Technol. 9, 2127 (2020)
DOI URL |
[2] | Y.T. Chiu, C.K. Lin, J.C. Wu, J. Power Sources 196, 2005 (2011) |
[3] | Y. Han, J. Sun, Y. Sun, J. Sun, X. Ran, Metals 10, 86 (2020) |
[4] |
A. Malfliet, W. Van den Broek, F. Chassagne, J.D. Mithieux, B. Blanpain, P. Wollants, J. Alloys Compd. 509, 9583 (2011)
DOI URL |
[5] | N. Fujita, K. Ohmura, A. Yamamoto, Mater. Sci. Eng. A 351, 272 (2003) |
[6] |
Y. Kato, M. Ito, Y. Kato, O. Furukimi, Mater. Trans. 51, 1531 (2010)
DOI URL |
[7] |
A. Miyazaki, K. Takao, O. Furukimi, ISIJ Int. 42, 916 (2002)
DOI URL |
[8] | K. Ikeda, N.K.G. Yamoah, W.T. Reynolds Jr., J. Hamada, M. Murayama, Metall. Mater. Trans. A 46, 3460 (2015) |
[9] | K. Han, S. Hong, C. Lee, Mater. Sci. Eng. A 546, 97 (2012) |
[10] |
H.H. Lu, H.K. Guo, W. Liang, J.C. Li, G.W. Zhang, T.T. Li, Mater. Des. 188, 108477 (2020)
DOI URL |
[11] | Y. Shao, Y. Li, C. Liu, Z. Yan, Y. Liu, Acta Metal. Sin. 55, 1367 (2019) |
[12] |
E.E. Oguzie, J. Li, Y. Liu, D. Chen, Y. Li, K. Yang, F. Wang, J. Mater. Sci. 45, 5902 (2010)
DOI URL |
[13] | J.J. Guo, M.S.N. Sato, J. Chin. Soc. Corros. Prot. 10, 239 (1990) |
[14] |
T. Ujiro, S. Satoh, R.W. Staehle, W.H. Smyrl, Corros. Sci. 43, 2185 (2001)
DOI URL |
[15] | T. Xi, M.B. Shahzad, D. Xu, J. Zhao, C. Yang, M. Qi, K. Yang, Mater. Sci. Eng. A 675, 243 (2016) |
[16] | A.S. Alomari, N. Kumar, K.L. Murty, Metall. Mater. Trans. A 50, 641 (2019) |
[17] | V.T. Ha, W.S. Jung, Mater. Sci. Eng. A 558, 103 (2012) |
[18] | H. Ota, T. Nakamura, K. Maruyama, Mater. Sci. Eng. A 586, 133 (2013) |
[19] |
S. Kobayashi, T. Takeda, T. Oe, J.I. Hamada, N. Kanno, Y. Inoue, K. Nakai, T. Sakamoto, ISIJ Int. 54, 1697 (2014)
DOI URL |
[20] |
S. Kobayashi, T. Takeda, K. Nakai, J.I. Hamada, N. Kanno, T. Sakamoto, ISIJ Int. 51, 657 (2011)
DOI URL |
[21] |
T. Zhang, Y. Han, W. Wang, Y. Gao, Y. Song, X. Ran, Acta Metall. Sin. (Engl. Lett.) 33, 1289 (2020)
DOI URL |
[22] |
Q. Xu, T. Cao, F. Ye, F. Xu, H. Li, X. Fang, J. Zhao, Mater. Charact. 139, 311 (2018)
DOI URL |
[23] |
S. Liu, Q. Wang, Z. Yang, W. Chai, J. Chen, L. Ye, J. Tang, Mater. Charact. 156, 109837 (2019)
DOI URL |
[24] | G.M. Sim, J.C. Ahn, S.C. Hong, K.J. Lee, K.S. Lee, Mater. Sci. Eng. A 396, 159 (2005) |
[25] |
H. Luo, Q. Yu, C.F. Dong, G. Sha, Z.B. Liu, J.X. Liang, L. Wang, G. Han, X.G. Li, Corros. Sci. 139, 185 (2018)
DOI URL |
[26] | B. Xiao, L. Xu, L. Zhao, H. Jing, Y. Han, Z. Tang, Mater. Sci. Eng. A 707, 466 (2017) |
[27] |
G. Stechauner, E. Kozeschnik J. Mater. Eng. Perform. 23, 1576 (2014)
DOI URL |
[28] | Z. Zhang, Z. Hu, H. Tu, S. Schmauder, G. Wu, Mater. Sci. Eng. A 681, 74 (2017) |
[29] | T. Juuti, L. Rovatti, D. Porter, G. Angella, J. Kömi, Mater. Sci. Eng. A 726, 45 (2018) |
[30] | G. Chen, J. Pan, J. Liu, J. Wang, X. Bai, J. Zhang, T. Zhang, W. Tang, Trans. Mate. Heat Treat. 34, 103 (2013) |
[31] | L. Wang, L. Zhu, Q. Wang, Trans. Mate. Heat Treat. 32, 127 (2011) |
[32] | V. Ganesan, K. Laha, A.K. Bhaduri T. Indian I. Metals 69, 247 (2016) |
[33] |
Y. Yamamoto, M. Takeyama, Z.P. Lu, C.T. Liu, N.D. Evans, P.J. Maziasz, M.P. Brady, Intermetallics 16, 453 (2008)
DOI URL |
[34] | Q. Guo, Y. Li, B. Chen, R. Ding, L. Yu, Y. Liu, Acta Metall. Sin.(2020). https://doi.org/10.11900/0412.1961.2020.00109 |
[35] |
W. Wang, P. Han, P. Peng, T. Zhang, Q. Liu, S.N. Yuan, L.Y. Huang, H.L. Yu, K. Qiao, K.S. Wang, Acta Metall. Sin. (Engl. Lett.) 33, 43 (2020)
DOI URL |
[36] |
N. Nabiran, S. Weber, W. Theisen, Steel Res. Int. 83, 758 (2012)
DOI URL |
[37] | T. Chen, C.M. Parish, Y. Yang, L. Tan, Mater. Sci. Eng. A 720, 110 (2018) |
[38] |
Z. Liu, Z. Liu, X. Wang, Z. Chen, Mater. Charact. 149, 95 (2019)
DOI URL |
[39] | H. Yan, H. Bi, X. Li, Z. Xu, Iron Steel 44, 59 (2009) |
[40] |
D.B. Park, S.M. Hong, K.H. Lee, M.Y. Huh, J.Y. Suh, S.C. Lee, W.S. Jung, Mater. Charact. 93, 52 (2014)
DOI URL |
[41] | H. Mughrabi, Dislocations and Properties of Real Materials. The Institute of Metals, London 323, 221 (1985) |
[42] | K.L. Murty, G. Dentel, J. Britt, Mater. Sci. Eng. A 410, 28 (2005) |
[43] | N.E. Dowling, Mechanical Behavior of Materials, 3rd edn. (Pearson Education Inc, New Jersey, USA, 2007), pp. 779-797 |
[44] | Y.T. Chiu, C.K. Lin, J. Power Sources 198, 149 (2012) |
[45] | V. Dudko, A. Belyakov, D. Molodov, R. Kaibyshev, Metall. Mater. Trans. A 44, 162 (2011) |
[46] |
K. Maruyama, H. GhassemiArmaki, R.P. Chen, K. Yoshimi, M. Yoshizawa, M. Igarashi, Int. J. Pres. Ves. Pip. 87, 276 (2010)
DOI URL |
[47] |
P. Ou, L. Li, X.F. Xie, J. Sun, Acta Metall. Sin. (Engl. Lett.) 28, 1336 (2015)
DOI URL |
[48] | F.C. Monkman, N.J. Grant, Iron Age 56, 593 (1956) |
[49] | A Czyrska-Filemonowicz, PJ Ennis, A Zielińska-Lipiec Metallurgy on the Turn of the 20th Century 1, 193 (2002) |
[50] | F.R. Larson, J. Miler, ASME Trans. 74, 765 (1952) |
[1] | Chuanfeng Wu, Junmei Chen, Zhiyuan Yu, Hao Lu, Chun Yu, Jijin Xu. Ductility Anisotropy Induced by Ferrite in Direct Laser Deposited 17-4 PH Steel: Combined Microstructure and Dislocation Density Simulation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 765-776. |
[2] | Liwen Tan, Zhongwei Wang, Yanlong Ma. Tribocorrosion Behavior and Degradation Mechanism of 316L Stainless Steel in Typical Corrosive Media [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 813-824. |
[3] | Sabry S. Youssef, Xiaodong Zheng, Yingjie Ma, Sensen Huang, Min Qi, Jianke Qiu, Ruixue Zhang, Peitao Hua, Shijian Zheng, Jiafeng Lei, Rui Yang. Characterization of α2 Precipitates in Ti-6Al and Ti-8Al Binary Alloys: A Comparative Investigation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 710-718. |
[4] | Dong Wu, Shitong Wei, Shanping Lu. A Study of Microstructure and Mechanical Properties for the Autogenous Single-Pass Butt Weldment of a Ferritic/Martensitic Steel Using Gas Tungsten Arc Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 628-638. |
[5] | Sihan Chen, Tian Liang, Yangtao Zhou, Weiwei Xing, Chengwu Zheng, Yingche Ma, JinMing Wu, Guobin Li, Kui Liu. Phase Characterization and Formation Behavior in 6 wt% Si High-silicon Austenitic Stainless Steel during Isothermal Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 649-656. |
[6] | Hua-Zhen Jiang, Zheng-Yang Li, Tao Feng, Peng-Yue Wu, Qi-Sheng Chen, Yun-Long Feng, Long-Fei Chen, Jing-Yu Hou, He-Jian Xu. Effect of Process Parameters on Defects, Melt Pool Shape, Microstructure, and Tensile Behavior of 316L Stainless Steel Produced by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 495-510. |
[7] | Y. R. Ma, H. J. Yang, D. D. Ben, X. H. Shao, Y. Z. Tian, Q. Wang, Z. F. Zhang. Anisotropic Electroplastic Effects on the Mechanical Properties of a Nano-Lamellar Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 534-542. |
[8] | Mingxiao Guo, Junrong Tang, Tianzhen Gu, Can Peng, Qiaoxia Li, Chen Pan, Zhenyao Wang. Corrosion Behavior of 316L Stainless Steels Exposed to Salt Lake Atmosphere of Western China for 8 years [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 555-564. |
[9] | Ji-Jin Xu, Shuai Wang, Ze Chai, Chun Yu, Jun-Mei Chen, Hao Lu. Comparison of the Stress Corrosion Cracking Behaviour of AISI 304 Pipes Welded by TIG and LBW [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 579-589. |
[10] | Ping Deng, En-Hou Han, Qunjia Peng, Chen Sun. Corrosion Behavior and Mechanism of Irradiated 304 Nuclear Grade Stainless Steel in High-Temperature Water [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 174-186. |
[11] | Xi Zhao, Fa-Fa Yan, Zhi-Min Zhang, Peng-Cheng Gao, Shu-Chang Li. Influence of Heat Treatment on Precipitation Behavior and Mechanical Properties of Extruded AZ80 Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 54-64. |
[12] | Tong Zhang, Ying Han, Wen Wang, Yang Gao, Ying Song, Xu Ran. Influence of Aging Time on Microstructure and Corrosion Behavior of a Cu-Bearing 17Cr-1Si-0.5Nb Ferritic Heat-Resistant Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1289-1301. |
[13] | Shasha Zhang, Niels van Dijk, Sybrand van der Zwaag. A Review of Self-healing Metals: Fundamentals, Design Principles and Performance [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1167-1179. |
[14] | Guohua Wu, Chunchang Shi, Liang Zhang, Wencai Liu, Antao Chen, Wenjiang Ding. Effect of Different Ageing Processes on Microstructure and Mechanical Properties of Cast Al-3Li-2Cu-0.2Zr Alloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1243-1251. |
[15] | Hou-Long Liu, Ling-Ling Liu, Ming-Yu Ma, Li-Qing Chen. Influence of Finish Rolling Temperature on Microstructure and Mechanical Properties of a 19Cr1.5Mo0.5 W Ferritic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 991-1000. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||