Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (2): 174-186.DOI: 10.1007/s40195-020-01123-y
Previous Articles Next Articles
Ping Deng1,2, En-Hou Han1(), Qunjia Peng1,3, Chen Sun4
Received:
2020-01-07
Revised:
2020-06-21
Accepted:
2020-06-30
Online:
2021-02-10
Published:
2021-02-09
Contact:
En-Hou Han
Ping Deng, En-Hou Han, Qunjia Peng, Chen Sun. Corrosion Behavior and Mechanism of Irradiated 304 Nuclear Grade Stainless Steel in High-Temperature Water[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 174-186.
Add to citation manager EndNote|Ris|BibTeX
C | Mn | Si | S | P | Ni | Cr | Co | Fe |
---|---|---|---|---|---|---|---|---|
0.04 | 1.73 | 0.27 | 0.002 | 0.021 | 8.87 | 19.51 | 0.04 | Bal |
Table 1 Chemical composition (wt%) of 304NG stainless steel
C | Mn | Si | S | P | Ni | Cr | Co | Fe |
---|---|---|---|---|---|---|---|---|
0.04 | 1.73 | 0.27 | 0.002 | 0.021 | 8.87 | 19.51 | 0.04 | Bal |
Fig. 1 Surface morphologies of the oxide scales formed on solution-annealed a1, b1, c1, d1, 0.5 dpa a2, b2, c2, d2, 1.5 dpa a3, b3, c3, d3 and 3 dpa b4, c4, d4 irradiated specimens following the exposure in simulated primary PWR water at 320 °C for the period of 25 h a1, a2, a3, 500 h b1, b2, b3, b4, 1000 h c1, c2, c3, c4 and 1500 h d1, d2, d3, d4
Fig. 2 XPS composition profiles of the oxide scales formed on 0.5 and 1.5 dpa irradiated specimens following the exposure for 500 h a, b, 1000 h c, d and 1500 h e, f. The black vertical lines located at half of the highest O concentration display the thickness of the oxide film
Fig. 4 TEM observation and analysis of the cross section of the oxide scales formed on 1.5 dpa irradiated specimens of 304NG SS following the 100- and 1000-h exposure in simulated primary PWR water. a and b TEM observations of the cross section of the oxide scales. c and d high-resolution observations and analysis of the inner oxide. e and f corresponding point scans collected along the red lines shown in a and b, respectively
Fig. 5 Time-dependent inner oxide thickness obtained on 0.5 and 1.5 dpa irradiated specimens following the exposure to primary PWR water at 320 °C. The experimental data were adjusted with a power fit, and the error bars mean the maximum and minimum values
Fig. 6 a, b TEM observation of the cross section of a grain boundary on a 0.5- and b 1.5 dpa irradiated specimens following the 25-h exposure in primary PWR water at 320 °C. c, d The corresponding EDX mappings for O, Cr, Fe and Ni, respectively
Fig. 7 a TEM observation of the cross section of a grain boundary on 0.5 dpa irradiated specimen following the 100-h exposure in PWR primary water at 320 °C. b The corresponding EDX mappings for O, Cr, Fe and Ni, respectively. c and d EDX point scans across the grain boundary collected along the red lines shown in a
Fig. 8 a TEM observation of the cross section of a grain boundary on 1.5 dpa irradiated specimen following the 100-h exposure in PWR primary water at 320 °C. b The corresponding EDX mappings for O, Cr, Fe and Ni, respectively. c and d EDX point scans across the grain boundary collected along the red lines shown in a
Fig. 9 a TEM observation of the cross section of a grain boundary on 0.5 dpa irradiated specimen following the 1500-h exposure in PWR primary water at 320 °C. b The corresponding EDX mappings for O, Cr, Fe and Ni, respectively. c and d EDX point scans across the grain boundary collected along the red lines shown in a
Fig. 10 a TEM observation of the cross section of a grain boundary on 1.5 dpa irradiated specimen following the 1500-h exposure in PWR primary water at 320 °C. b The corresponding EDX mappings for O, Cr, Fe and Ni, respectively. c and d EDX point scans across the grain boundary collected along the red lines shown in a
Fig. 11 Schematics showing the evolution of the oxide scale formed on a1-a4 solution-annealed and b1, b2 irradiated specimens of 304NG SS following the exposure to PWR primary water at 320 °C
[1] | K.J. Stephenson, G.S. Was, J. Nucl. Mater. 444, 331(2014) |
[2] | H. Nishioka, K. Fukuya, K. Fujii, T. Torimaru, J. Nucl. Sci. Technol. 45, 1072(2008) |
[3] | Y. Chen, B. Alexandreanu, W.K. Soppet, W.J. Shack, K. Natesan, A.S. Rao, Slow strain rate tensile tests of irradiated austenitic stainless steels in simulated PWR environment. Paper presented at the 15th international conference on environmental degradation of materials in nuclear power systems-water reactors, Colorado, 1277(2011) |
[4] | Z. Jiao, G.S. Was, J.T. Busby, The role of localized deformation in iascc of proton-irradiated austenitic stainless steels. Paper presented at the 13th international conference on environmental degradation of materials in nuclear power systems, Whistler, British Columbia, 19 (2007) |
[5] | Z. Jiao, G.S. Was, T. Miura, K. Fukuya, J. Nucl. Mater. 452, 328(2014) |
[6] | Z. Jiao, G.S. Was, J. Nucl. Mater. 408, 246(2011) |
[7] | Z. Jiao, G.S. Was, J. Nucl. Mater. 407, 34(2010) |
[8] | Z. Jiao, G.S. Was, J. Nucl. Mater. 382, 203(2008) |
[9] | K. Fukuya, H. Nishioka, K. Fujii, T. Miura, T. Torimaru, J. Nucl. Mater. 417, 958(2011) |
[10] | T. Miura, K. Fujii, K. Fukuya, Y. Ito, J. Nucl. Mater. 386-388, 210(2009) |
[11] | K. Fukuya, H. Nishioka, K. Fujii, T. Miura, Y. Kitsunai, J. Nucl. Mater. 432, 67(2013) |
[12] | M.D. McMurtrey, G.S. Was, Role of slip behavior in the irradiation assisted stress corrosion cracking in austenitic steels. Paper presented at the 15th international symposium on environmental degradation of materials in nuclear power systems-water reactors, Colorado, 1383(2011) |
[13] | I. Ioka, Y. Ishijima, K. Usami, N. Sakuraba, Y. Kato, K. Kiuchi, J. Nucl. Mater. 417, 887(2011) |
[14] | Z.C. Zheng, Y.X. Yu, W.P. Zhang, Z.Y. Shen, F.F. Luo, L.P. Guo, Y.Y. Ren, R. Tang, Acta Metall. Sin.-Engl. Lett. 30, 89(2017) |
[15] | A.B. Du, W. Feng, H.L Ma, T. Liang, D.Q. Yuan, P. Fan, Q.L. Zhang, C. Huang, Acta Metall. Sin.-Engl. Lett. 30, 1049(2017) |
[16] | P. Deng, C. Sun, Q.J. Peng, E.H. Han, W. Ke, Z. Jiao, Acta Metall. Sin. 55, 349(2019) |
[17] | A. Turnbull, K. Mingard, J.D. Lord, B. Roebuck, D.R. Tice, K.J. Mottershead, N.D. Fairweather, A.K. Bradbury, Corros. Sci. 53, 3398(2011) |
[18] | G.S. Was, Recent Developments in understanding irradiation assisted stress corrosion cracking. Paper presented at the 11th international symposium on environmental degradation of materials in nuclear power systems-water reactors, Washington, 965(2003) |
[19] | P. Deng, Q.J. Peng, E.H. Han, W. Ke, C. Sun, Z. Jiao, Corros. Sci. 127, 91(2017) |
[20] | S. Perrin, L. Marchetti, C. Duhamel, M. Sennour, F. Jomard, Oxid. Met. 80, 623(2013) |
[21] | M. Dumerval, S. Perrin, L. Marchetti, M. Sennour, F. Jomard, S. Vaubaillon, Y. Wouters, Corros. Sci. 107, 1(2016) |
[22] | C.S. Liu, J.Q. Wang, Z.M. Zhang, E.H. Han, W. Liu, D. Liang, Z.T. Yang, Sin Acta Metall. Sin.-Engl. Lett. 32, 506(2019) |
[23] | P. Deng, Q.J. Peng, E.H. Han, W. Ke, C. Sun, H.H. Xia, Z. Jiao, Acta Metall. Sin. 53, 1588(2017) |
[24] | Z. Jiao, G.S. Was, Acta Mater. 59, 1220(2011) |
[25] | P. Ampornrat, Y.B. Chen, L.M. Wang, G.S. Was, Microstructure and oxidation mechanisms of ferritic-martensitic alloy HCM12A in supercritical water. Paper presented at the 14th international symposium on environmental degradation of materials in nuclear power systems-water reactors, Virginia Beach 1751 (2009) |
[26] | Y.L. Han, E.H. Han, Q.J. Peng, W. Ke, Corros. Sci. 121, 1(2017) |
[27] | X. Gao, X. Wu, Z.E. Zhang, H. Guan, E.H. Han, J. Supercrit. Fluids 42, 157 (2007) |
[28] | F. Huang, J.Q. Wang, E.H. Han, W. Ke, Corros. Sci. 76, 52(2013) |
[29] |
W.J. Kuang, X. Wu, E.H. Han, Corros. Sci. 52, 4081(2010)
DOI URL |
[30] | W.J. Kuang, E.H. Han, X. Wu, J. Rao, Corros. Sci. 52, 3654(2010) |
[31] | Y.J. Kim, Corrosion 51, 849 (1995) |
[32] | J. Robertson, Corros. Sci. 29, 1275(1989) |
[33] | J. Robertson, Corros. Sci. 32, 443(1991) |
[34] | R.J. Lemire, G.A. McRae, J. Nucl. Mater. 294, 141(2001) |
[35] | P. Deng, Q.J. Peng, E.H. Han, W. Ke, Corrosion 73, 1237 (2017) |
[36] | S. Lozano-Perez, D.W. Saxey, T. Yamada, T. Terachi, Scr. Mater. 62, 855(2010) |
[37] | K. Kruska, S. Lozano-Perez, D.W. Saxey, T. Terachi, T. Yamada, T. Smith, D.W. George, Corros. Sci. 63, 225(2012) |
[38] | W.J. Kuang, G.S. Was, Acta Mater. 182, 120(2020) |
[39] | C. Ma, E.H. Han, Q.J. Peng, W. Ke, Appl. Surf. Sci. 442, 423(2018) |
[40] | Y.L. Han, J.N. Mei, Q.J. Peng, E.H. Han, W. Ke, Corros. Sci. 98, 72(2015) |
[41] | S. Ghosh, M.K. Kumar, V. Kain, Appl. Surf. Sci. 264, 312(2013) |
[42] | D.D. Macdonald, M.U. Macdonald, J. Electrochem. Soc. 137, 2395(1990) |
[43] | L. Marchetti, S. Perrin, F. Jambon, M. Pijolat, Corros. Sci. 102, 24(2016) |
[1] | Shasha Zhang, Niels van Dijk, Sybrand van der Zwaag. A Review of Self-healing Metals: Fundamentals, Design Principles and Performance [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1167-1179. |
[2] | Tong Zhang, Ying Han, Wen Wang, Yang Gao, Ying Song, Xu Ran. Influence of Aging Time on Microstructure and Corrosion Behavior of a Cu-Bearing 17Cr-1Si-0.5Nb Ferritic Heat-Resistant Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1289-1301. |
[3] | Hou-Long Liu, Ling-Ling Liu, Ming-Yu Ma, Li-Qing Chen. Influence of Finish Rolling Temperature on Microstructure and Mechanical Properties of a 19Cr1.5Mo0.5 W Ferritic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 991-1000. |
[4] | Yanyan Hong, Penglin Gao, Hongjia Li, Changsheng Zhang, Guangai Sun. Fatigue Damage Mechanism of AL6XN Austenitic Stainless Steel at High Temperatures [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 799-807. |
[5] | Mingxiao Guo, Qi Yin, Miaoran Liu, Chen Pan, Zhenyao Wang. Corrosion Behavior of 304 Stainless Steel Exposed to a Simulated Salt Lake Atmosphere [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 857-870. |
[6] | Zheng-Rong Ye, Zhi-Chao Qiu, Zheng-Bin Wang, Yu-Gui Zheng, Ran Yi, Xiang Zhou. Can the Prior Cathodic Polarisation Treatment Remove the Air-Formed Surface Film and Is It Necessary for the Potentiodynamic Polarisation Test? [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 839-845. |
[7] | Feng Shi, Ruo-Han Gao, Xian-Jun Guan, Chun-Ming Liu, Xiao-Wu Li. Application of Grain Boundary Engineering to Improve Intergranular Corrosion Resistance in a Fe–Cr–Mn–Mo–N High-Nitrogen and Nickel-Free Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 789-798. |
[8] | Jian Han, Zhixiong Zhu, Gang Wei, Xingxu Jiang, Qian Wang, Yangchuan Cai, Zhengyi Jiang. Microstructure and Mechanical Properties of Nb- and Nb + Ti-Stabilised 18Cr-2Mo Ferritic Stainless Steels [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 716-730. |
[9] | Xin Cai, Xiao-Qiang Hu, Lei-Gang Zheng, Dian-Zhong Li. Hot Deformation Behavior and Processing Maps of 0.3C-15Cr-1Mo-0.5N High Nitrogen Martensitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 693-704. |
[10] | Chenfan Yu, Yuan Zhong, Peng Zhang, Zhenjun Zhang, Congcong Zhao, Zhefeng Zhang, Zhijian Shen, Wei Liu. Effect of Build Direction on Fatigue Performance of L-PBF 316L Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 539-550. |
[11] | Zhu Wang, Zi-Ru Zhang, Lei Zhang, Zhe Feng, Min-Xu Lu. Comparison Study on the Semiconductive and Dissolution Behaviour of 316L and Alloy 625 in Hydrochloric Acid Solution [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 403-414. |
[12] | Yixun Yang, Qingchuan Wang, Jun Li, Lili Tan, Ke Yang. Enhancing General Corrosion Resistance of Biomedical High Nitrogen Nickel-Free Stainless Steel by Nitric Acid Passivation [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 307-312. |
[13] | Guodong Hu, Pei Wang, Dianzhong Li, Yiyi Li. High-temperature Tensile Behavior in Coarse-grained and Fine-grained Nb-containing 25Cr-20Ni Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1455-1465. |
[14] | Hao-Yu Yi, Tian Liang, Min Wang, Xiang-Dong Zha, Ying-Che Ma, Kui Liu. Effects of Silicon on the Microstructure and Mechanical Properties of 15-15Ti Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1583-1590. |
[15] | Hua Zhang, Chang-Yu Zhao, Qi-Long Guo, Rui-Sheng Yang, Li-Yuan Liu, San-Bao Lin. Microstructure and Corrosion Behavior of Friction Stir Welded Al Alloy Coated by In Situ Shot-Peening-Assisted Cold Spray [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 172-182. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||