Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (4): 570-586.DOI: 10.1007/s40195-025-01829-x
Previous Articles Next Articles
X. X. Zhang1,2(), E. Walz2, A. Langebeck3, J. Rebelo Kornmeier2, A. Kriele4, V. Luzin5,6, M. Adveev5,7, A. Bohlen3, M. Hofmann2
Received:
2024-11-11
Revised:
2024-12-10
Accepted:
2024-12-24
Online:
2025-04-10
Published:
2025-02-25
Contact:
X. X. Zhang, X. X. Zhang, E. Walz, A. Langebeck, J. Rebelo Kornmeier, A. Kriele, V. Luzin, M. Adveev, A. Bohlen, M. Hofmann. Macroscopic and Microscopic Residual Stresses in Nickel-Aluminum Bronze Matrix Composite Surface Deposits Manufactured via Laser Melt Injection[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 570-586.
Add to citation manager EndNote|Ris|BibTeX
CuAl10Ni5Fe4 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Cu | Al | Fe | Mn | Pb | Si | Zn | |||
Bal | 8.5-11.0 | 3.0-5.0 | 1 | 0-0.05 | 0-0.2 | 0-0.4 | |||
sFTC | |||||||||
W | C | Fe | Others | ||||||
Bal | 3.9 | 0.2 | < 0.2 |
Table 1 Chemical composition of CuAl10Ni5Fe4 bronze and sFTC particles (wt%)
CuAl10Ni5Fe4 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Cu | Al | Fe | Mn | Pb | Si | Zn | |||
Bal | 8.5-11.0 | 3.0-5.0 | 1 | 0-0.05 | 0-0.2 | 0-0.4 | |||
sFTC | |||||||||
W | C | Fe | Others | ||||||
Bal | 3.9 | 0.2 | < 0.2 |
Parameter, unit | CuAl10Ni5Fe4 | sFTC |
---|---|---|
Bulk density at 20 °C (g/cm3) Tap density (g/cm3) | 7.6 | 16.5 9.5-10.5 |
Hardness (HV) | 220 | 2700-3100 |
Thermal conductivity (W/(m K)) | 50 | 110 |
Absorption for 1080 nm wavelength (%) | 66.5 ± 1.2 | 84.0 ± 0.5 |
Melting point (°C) | 1035-1055 | 2870 |
Table 2 Physical properties of CuAl10Ni5Fe4 bronze and sFTC particles
Parameter, unit | CuAl10Ni5Fe4 | sFTC |
---|---|---|
Bulk density at 20 °C (g/cm3) Tap density (g/cm3) | 7.6 | 16.5 9.5-10.5 |
Hardness (HV) | 220 | 2700-3100 |
Thermal conductivity (W/(m K)) | 50 | 110 |
Absorption for 1080 nm wavelength (%) | 66.5 ± 1.2 | 84.0 ± 0.5 |
Melting point (°C) | 1035-1055 | 2870 |
Process parameter, unit | Value (s) |
---|---|
Laser power (W) | 1400 |
Process velocity (mm/min) | 300 |
Laser spot diameter (mm) | 3.0 |
Powder mass flow per unit length (g/min) | 19, none |
Carrier gas (Ar) flow rate (L/min) | 2 |
Shielding gas (Ar) flow rate (L/min) | 15 |
Pre-heating temperature (°C) | 400, room temperature (RT) |
Welding track length (mm) | 30 |
Welding track number | 1, 3 |
Horizontal overlap between tracks (%) | 40 |
Table 3 Laser process parameters
Process parameter, unit | Value (s) |
---|---|
Laser power (W) | 1400 |
Process velocity (mm/min) | 300 |
Laser spot diameter (mm) | 3.0 |
Powder mass flow per unit length (g/min) | 19, none |
Carrier gas (Ar) flow rate (L/min) | 2 |
Shielding gas (Ar) flow rate (L/min) | 15 |
Pre-heating temperature (°C) | 400, room temperature (RT) |
Welding track length (mm) | 30 |
Welding track number | 1, 3 |
Horizontal overlap between tracks (%) | 40 |
Fig. 2 Summary of all samples. RT stands for room temperature. S1 and S2 are single-track samples. S3 and S4 are three-track samples prepared without base-plate pre-heating. S5 and S6 are three-track samples prepared with a base-plate pre-heating temperature of 400 °C
Process parameter, unit | Value(s) |
---|---|
Laser parameters (a, b, c) (mm) Fraction of heat input, | (1.5, 1.5, 0.27) 1 |
Absorption efficiency (%) Pre-heating temperature (°C) | 22.2 Room temperature (25) |
Welding track number | 1 |
Table 4 FEM process parameters
Process parameter, unit | Value(s) |
---|---|
Laser parameters (a, b, c) (mm) Fraction of heat input, | (1.5, 1.5, 0.27) 1 |
Absorption efficiency (%) Pre-heating temperature (°C) | 22.2 Room temperature (25) |
Welding track number | 1 |
Fig. 6 OM microstructures of three-track samples with a base-plate pre-heating temperature of 400 ºC: a re-melted bronze; b sFTC/bronze composite deposit
Fig. 7 SEM microstructures of the single-track sFTC/bronze composite deposit in a composite zone, b transition zone, c heat-affected zone, and d parent material zone. The positions of a, b, c, and d along the thickness direction of the deposit are illustrated in the right part of this figure. The white areas in a and b are sFTC particles
Sample | Phase | Space group | Lattice parameters | Volume fraction (%) | |
---|---|---|---|---|---|
a (Å) | c (Å) | ||||
sFTC powder | h-WC | P-6m2 | 2.90273(47) | 2.83503(66) | 36.2 |
ε-W2C | P-31m | 5.18330(84) | 4.72633(125) | 63.8 | |
S2L | h-WC | P-6m2 | 2.90227(7) | 2.83471(12) | 19.7 |
ε-W2C | P-31m | 5.18363(14) | 4.72777(22) | 30.7 | |
Cu-matrix | Fm-3m | 3.65847(8) | 39.7 |
Table 5 Rietveld analysis results of main phases
Sample | Phase | Space group | Lattice parameters | Volume fraction (%) | |
---|---|---|---|---|---|
a (Å) | c (Å) | ||||
sFTC powder | h-WC | P-6m2 | 2.90273(47) | 2.83503(66) | 36.2 |
ε-W2C | P-31m | 5.18330(84) | 4.72633(125) | 63.8 | |
S2L | h-WC | P-6m2 | 2.90227(7) | 2.83471(12) | 19.7 |
ε-W2C | P-31m | 5.18363(14) | 4.72777(22) | 30.7 | |
Cu-matrix | Fm-3m | 3.65847(8) | 39.7 |
Fig. 11 Revisiting residual strains and stresses in the sFTC/bronze composite deposit in the previous study [7]: a the residual stresses based on measured d0; b the residual stresses based on the assumption of σND = 0; c the measured lattice spacing values along LD, TD, and ND for this sFTC/bronze composite deposit; d the measured d0 and recalculated d0 based on the assumption of σND = 0
Fig. 12 Measured lattice spacing d values along LD, TD, and ND and the recalculated d0 values based on the assumption of σND = 0 for the Cu matrix of the re-melted bronze samples S1, S3, and S5 a, c, e; and the Cu matrix of the sFTC/bronze composite deposit samples S2, S4, and S6 b, d, f
Fig. 14 Comparison between the measured and simulated results for S1: a the temperature in the bronze sample during the laser melting process and b the residual stresses
Fig. 15 Simulated LD and TD residual stress maps present after the process. A cross-sectional view of the bronze block, which has been split in half, is used to visualize the distribution of residual stresses at the location of the laser melting process
Fig. 16 Thermal misfit residual stresses in a comb pin samples and b MMC layer samples determined from single peak fitting. The average thermal misfit residual stresses in c MMC layer samples were determined using a Rietveld analysis
[1] | J.A. Wharton, R.C. Barik, G. Kear, R.J.K. Wood, K.R. Stokes, F.C. Walsh, Corros. Sci. 47, 3336 (2005) |
[2] | R. Cottam, V. Luzin, H. Moody, D. Edwards, A. Majumdar, Y.C. Wong, J. Wang, M. Brandt, Wear 317, 56 (2014) |
[3] | H.N. Krogstad, R. Johnsen, Corros. Sci. 121, 43 (2017) |
[4] | I. Richardson, Guide to Nickel Aluminium Bronze for Engineers, Copper Development Association, 2016. |
[5] | Y.L. Feng, X.T. Pang, K. Feng, Y.Q. Feng, Z.G. Li, J. Mater. Res. Technol. 15, 5597 (2021) |
[6] | H. Freiße, A. Langebeck, H. Köhler, T. Seefeld, Forming OAJ 2, 001 (2016) |
[7] | X.X. Zhang, J.R. Kornmeier, M. Hofmann, A. Langebeck, S. Alameddin, R.P. Alessio, F. Fritzen, J.R. Bunn, S. Cabeza, Strain 59, e12457 12457 (2023) |
[8] | S. Teslia, I. Solodkyi, O. Yurkova, O. Bezdorozhev, I. Bogomol, P. Loboda, J. Alloy. Compd. 921, 166042 (2022) |
[9] | J.R. Davis, ASM Specialty Handbook: Copper and Copper Alloys, ASM International, 2001. |
[10] | DURMAT® WSC Pulver,https://durmat.com/de/produkte/wolframkarbid-und-seine-formen/durmat-wsc/#:-:text=WSC%20(Wolframschmelzkarbid)%20ist%20die%20eutektische,und%2020%20%E2%80%93%2022%20%25%20WC, accessed on 09 May 2024. |
[11] | O. Kirstein, V. Luzin, U. Garbe, Neutron News 20, 34 (2009) |
[12] | I.O.f. Standardization, Non-destructive testing — Standard Test Method for Determining Residual Stresses by Neutron Diffraction, IS. 21432: 2019, 2019. |
[13] | J. Saroun, J. Rebelo Kornmeier, M. Hofmann, P. Mikula, M. Vrana, J. Appl. Crystallogr. 46, 628 (2013) |
[14] |
J. Rebelo Kornmeier, M. Hofmann, V. Luzin, J. Gibmeier, J. Saroun, Mater. Charact. 154, 53 (2019).
DOI |
[15] | A. Steuwer, S.J. Barnes, J. Altenkirch, R. Johnson, P.J. Withers, Metall. Mater. Trans. A 43, 2356 (2012) |
[16] | O. Muransky, M.C. Smith, P.J. Bendeich, T.M. Holden, V. Luzin, R.V. Martins, L. Edwards, Int. J. Solids Struct. 49, 1045 (2012) |
[17] | V. Akrivos, R.C. Wimpory, M. Hofmann, B. Stewart, O. Muransky, M.C. Smith, J. Bouchard, J. Appl. Crystallogr. 53, 1181 (2020) |
[18] | M. Avdeev, J.R. Hester, J. Appl. Crystallogr. 51, 1597 (2018) |
[19] | Y.F. Li, Y.M. Gao, B. Xiao, T. Min, Z.J. Fan, S.Q. Ma, L.L. Xu, J. Alloy. Compd. 502, 28 (2010) |
[20] | C. Frontera, J. Rodríguez-Carvajal, Physica B 335, 219 (2003) |
[21] | T. Gnaupel-Herold, J. Appl. Crystallogr. 45, 573 (2012) |
[22] | M. Lee, R.S. Gilmore, J. Mater. Sci. 17, 2657 (1982) |
[23] | Y.Z. Liu, Y.H. Jiang, R. Zhou, J. Feng, Ceram. Int. 40, 2891 (2014) |
[24] | M.R. Daymond, M.A.M. Bourke, R.B. Von Dreele, J. Appl. Phys. 85, 739 (1999) |
[25] | M.R. Daymond, J. Appl. Phys. 96, 4263 (2004) |
[26] | J.B. Nelson, D.P. Riley, P. Phys, Soc. Lond. 57, 160 (1945) |
[27] | R.P. Elliott, Adv. X-ray Anal. 8, 134 (1964) |
[28] | T. Kaneko, S.K. Gong, O. Nittono, T. Jpn I. Met. 28, 95 (1987) |
[29] | D.S. Tsai, T.S. Chin, S.E. Hsu, M.P. Hung, Mater. Trans. JIM 30, 474 (1989) |
[30] | Smith M. ABAQUS/Standard user’s manual, version 6.9. United States: Dassault Systèmes Simulia Corp; 2009. |
[31] | K.C. Mills, Recommended Values of Thermophysical Properties for Selected Commercial Alloys, Woodhead Publishing, 2002. |
[32] | J. Goldak, A. Chakravarti, M. Bibby, Metall. Trans. B 15, 299 (1984) |
[33] | D.M. Lloyd, G.W. Lorimer, N. Ridley, Met. Technol. 7, 114 (2013) |
[34] | T. Murray, S. Thomas, Y. Wu, W. Neil, C. Hutchinson, Addit. Manuf. 33, 101122 (2020) |
[35] | P.J. Withers, M. Preuss, A. Steuwer, J.W.L. Pang, J. Appl. Crystallogr. 40, 891 (2007) |
[36] | M. Hofmann, R.C. Wimpory, Int. J. Pressure Vessels Pip. 86, 122 (2009) |
[37] | R.C. Wimpory, C. Ohms, M. Hofmann, R. Schneider, A.G. Youtsos, Int. J. Pressure Vessels Pip. 86, 48 (2009) |
[38] | A. Langebeck, A. Bohlen, T. Seefeld, X.X. Zhang, J. Rebelo Kornmeier, M. Hofmann, S. Sharba, F. Fritzen, Schweißen und Schneiden 76, 62 (2024). |
[39] | M.E. Fitzpatrick, M.T. Hutchings, P.J. Withers, Acta Mater. 45, 4867 (1997) |
[40] | X.X. Zhang, B.L. Xiao, H. Andrä, Z.Y. Ma, Compos. Struct. 137, 18 (2016). |
[1] | Jinpeng Hu, Tao Sun, Fujun Cao, Yifu Shen, Zhiyuan Yang, Chan Guo. Enhanced Strength-Ductility Synergy in Submerged Friction Stir Processing ER2319 Alloy Manufactured by Wire-Arc Additive Manufacturing via Creating Ultrafine Microstructure [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 793-807. |
[2] | Kun Yi, Siqi Xiang, Mengcheng Zhou, Xinfang Zhang, Furui Du. Altering the Residual Stress in High-Carbon Steel through Promoted Dislocation Movement and Accelerated Carbon Diffusion by Pulsed Electric Current [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1511-1522. |
[3] | Shangzhou Zhang, Yuankang Wang, Bing Zhou, Fanchao Meng, Hua Zhang, Shujun Li, Qingmiao Hu, Li Zhou. Finite Element Prediction of Residual Stress in Rhombic Dodecahedron Ti-6Al-4V Titanium Alloy Additively Manufactured by Electron Beam Melting [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 35-47. |
[4] | Naying An, Sansan Shuai, Tao Hu, Chaoyue Chen, Jiang Wang, Zhongming Ren. Application of Synchrotron X-Ray Imaging and Diffraction in Additive Manufacturing: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 25-48. |
[5] | B. Mehdi, R. Badji, V. Ji, B. Alili, D. Bradai, W. Bedjaoui, F. Deschaux-Beaume, F. Brisset. Unveiling the Residual Stresses, Local Micromechanical Properties and Crystallographic Texture in a Ti-6Al-4V Weld Joint [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 997-1006. |
[6] | Yang Liu, Lei Wang, Kaiyue Yang, Xiu Song. Effects of Thermally Assisted Warm Laser Shock Processing on the Microstructure and Fatigue Property of IN718 Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(12): 1645-1656. |
[7] | Massab Junaid, Fahd Nawaz Khan, Tauheed Shahbaz, Haris saleem, Julfikar Haider. Influence of Filler on the Microstructure, Mechanical Properties and Residual Stresses in TIG Weldments of Dissimilar Titanium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1395-1406. |
[8] | Meng Yan, Cong Wang, Tianjiao Luo, Yingju Li, Xiaohui Feng, Qiuyan Huang, Yuansheng Yang. Effect of Pulsed Magnetic Field on the Residual Stress of Rolled Magnium Alloy AZ31 Sheet [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 45-53. |
[9] | Siqi Xiang, Xinfang Zhang. Residual Stress Removal Under Pulsed Electric Current [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 281-289. |
[10] | Wen-Chao Dong, Dian-Bao Gao, Shan-Ping Lu. Numerical Investigation on Residual Stresses of the Safe-End/Nozzle Dissimilar Metal Welded Joint in CAP1400 Nuclear Power Plants [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(5): 618-628. |
[11] | Huseyin Zengin, Yunus Turen, Muhammet Emre Turan, Fatih Ayd?n. Evolution of Microstructure, Residual Stress, and Tensile Properties of Mg-Zn-Y-La-Zr Magnesium Alloy Processed by Extrusion [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(11): 1309-1319. |
[12] | Lin Jiang, Liang Zhang, Zhi-Quan Liu. Optimal Design of Co/In/Cu Sputtering Target Assembly Using Finite Element Method and Taguchi Method [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(11): 1407-1414. |
[13] | Zhong-Yuan Feng, Xin-Jie Di, Shi-Pin Wu, Dong-Po Wang, Xiao-Qian Liu. Comparison of Microstructure and Residual Stress Between TIG and MAG Welding Using Low Transformation Temperature Welding Filler [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(3): 263-272. |
[14] | Ye-Jun Zhu, Wen-Feng Ding, Ze-Yu Zhao, Yu-Can Fu, Hong-Hua Su. Compressive Strength and Interface Microstructure of PCBN Grains Brazed with High-Frequency Induction Heating Method [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(7): 641-649. |
[15] | Z.G. Liu, T.I. Wong, W. Huang, N. Sridhar, S.J. Wang. Effect of Surface Polishing Treatment on the Fatigue Performance of Shot-Peened Ti-6Al-4V Alloy [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(7): 630-640. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||