Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (4): 587-596.DOI: 10.1007/s40195-025-01827-z
Previous Articles Next Articles
Longfei Ma, Yingzhengsheng Huang, Wei Quan, Qiang Zheng(), Juan Du(
)
Received:
2024-11-06
Revised:
2024-12-20
Accepted:
2024-12-24
Online:
2025-04-10
Published:
2025-02-21
Contact:
Qiang Zheng, Longfei Ma, Yingzhengsheng Huang, Wei Quan, Qiang Zheng, Juan Du. Improved Coercivity in Cu-Doped SmCo5 Nanocomposite Powders Obtained by Low Temperature Annealing[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 587-596.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Intrinsic coercivity Hci (T) a and the change of coercivity ΔHci (T) of different Cu doping compared with that of Cu-free SmCo5 b. The first derivative of the initial magnetization curves (dM/dH) for SmCo5-3 wt% Cu annealed at different temperatures c and SmCo5 containing different Cu contents annealed at 600 °C d. The initial magnetization curves of c, d are shown as insets
Cu doping (wt%) | Temperature (°C) | Hci (kOe) | ΔHci (kOe) | Mr (emu/g) | (BH)max (MGOe) |
---|---|---|---|---|---|
0 | 500 | 19.7 | 75.8 | 15.9 | |
1 | 500 | 22.8 | 3.1 | 70.3 | 14.0 |
3 | 500 | 26.0 | 6.3 | 66.4 | 12.5 |
5 | 500 | 24.8 | 5.1 | 63.1 | 11.2 |
0 | 550 | 25.5 | - | 70.7 | 13.8 |
1 | 550 | 28.1 | 2.6 | 69.4 | 13.4 |
3 | 550 | 31.8 | 6.3 | 64.3 | 12.2 |
5 | 550 | 31.4 | 5.9 | 59.2 | 11.2 |
0 | 600 | 26.1 | - | 66.6 | 12.2 |
1 | 600 | 31.7 | 5.6 | 65.4 | 11.7 |
3 | 600 | 34.2 | 8.1 | 59.7 | 10.1 |
5 | 600 | 33.6 | 7.5 | 54.3 | 9.2 |
0 | 650 | 28.5 | - | 62.9 | 11.1 |
1 | 650 | 31.4 | 2.9 | 62.5 | 9.9 |
3 | 650 | 32.5 | 4 | 56.8 | 8.2 |
5 | 650 | 32.1 | 3.6 | 52.5 | 7.9 |
Table 1 Magnetic properties, including coercivity Hci, remanence Mr, maximum magnetic energy product (BH)max of different weight percent of Cu-doped SmCo5 annealed at different temperatures for 30 min
Cu doping (wt%) | Temperature (°C) | Hci (kOe) | ΔHci (kOe) | Mr (emu/g) | (BH)max (MGOe) |
---|---|---|---|---|---|
0 | 500 | 19.7 | 75.8 | 15.9 | |
1 | 500 | 22.8 | 3.1 | 70.3 | 14.0 |
3 | 500 | 26.0 | 6.3 | 66.4 | 12.5 |
5 | 500 | 24.8 | 5.1 | 63.1 | 11.2 |
0 | 550 | 25.5 | - | 70.7 | 13.8 |
1 | 550 | 28.1 | 2.6 | 69.4 | 13.4 |
3 | 550 | 31.8 | 6.3 | 64.3 | 12.2 |
5 | 550 | 31.4 | 5.9 | 59.2 | 11.2 |
0 | 600 | 26.1 | - | 66.6 | 12.2 |
1 | 600 | 31.7 | 5.6 | 65.4 | 11.7 |
3 | 600 | 34.2 | 8.1 | 59.7 | 10.1 |
5 | 600 | 33.6 | 7.5 | 54.3 | 9.2 |
0 | 650 | 28.5 | - | 62.9 | 11.1 |
1 | 650 | 31.4 | 2.9 | 62.5 | 9.9 |
3 | 650 | 32.5 | 4 | 56.8 | 8.2 |
5 | 650 | 32.1 | 3.6 | 52.5 | 7.9 |
Fig. 2 XRD patterns of different Cu doped SmCo5 annealed at 600 °C for 30 min a, b the calculated grain size by Scherrer formula for SmCo5 containing different Cu contents annealed at different temperatures for 30 min
Fig. 3 Demagnetization curves of SmCo5 containing 0 and 1 wt% Cu annealed at 600 °C a, the demagnetization curves of SmCo5 containing 1 wt% Cu annealed at different temperatures b, the relationship between remanence c, maximum magnetic energy product (BH)max d and annealing temperatures for SmCo5 containing different Cu contents
Fig. 5 TEM image of the SmCo5-1 wt% Cu annealed at 600 °C for 30 min a, STEM image of the SmCo5-1 wt% Cu annealed at 600 °C for 30 min b and the corresponding elemental maps for Sm c, Co d, Cu e, respectively
Fig. 6 Line scanning of three elements, Sm, Co and Cu a, the ratio of (Co + Cu)/Sm along the scanning line b for SmCo5-3 wt% Cu annealed at 600 °C for 30 min. The image of the line scanning results is shown in a
[1] | K. Kumar, J. Appl. Phys. 63, R13 (1988) |
[2] | K. Strnat, G. Hoffer, J. Olson, W. Ostertag, J.J. Becker, J. Appl. Phys. 38, 1001 (1967) |
[3] | H. Kronmüller, K.D. Durst, M. Sagawa, J. Magn. Magn. Mater. 74, 291 (1988) |
[4] | K.J. Strnat, in Ferromagnetic Materials. ed. by E.P. Wohlfarth, K.H.J. Buschow (North-Holland, Amsterdam, 1988), p. 131 |
[5] | J. Ding, P.G. McCormick, R. Street, J. Alloy. Compd. 228, 102 (1995) |
[6] | A.R. Yan, W.Y. Zhang, H.W. Zhang, B.G. Shen, J. Magn. Magn. Mat. 210, 10 (2000) |
[7] | A. Laslo, C.V. Colin, O. Isnard, M. Guillot, J. Appl. Phys. 107, 09A732 (2010) |
[8] | A.A. Kündig, R. Gopalan, T. Ohkubo, K. Hono, Scr. Mater. 54, 2047 (2006) |
[9] | T. Saito, D. Nishio-Hamane, J. Alloy. Compd. 585, 423 (2014) |
[10] | T. Fukuzaki, H. Iwane, K. Abe, T. Doi, R. Tamura, T. Oikawa, J. Appl. Phys. 115, 17A760 (2014) |
[11] | J.C. Téllez-Blanco, R. Grössinger, R. Sato Turtelli, J. Alloy. Compd. 281, 1 (1998) |
[12] | J.C. Téllez-Blanco, R. Sato Turtelli, R. Grössinger, D. Givord, D. Eckert, A. Handstein, K.H. Müller, J. Magn. Magn. Mat. 238, 6 (2002) |
[13] | W.Y. Zhang, X.D. Zhang, Y.C. Yang, B.G. Shen, J. Alloy. Compd. 353, 274 (2003) |
[14] | R. Gopalan, K. Hono, A. Yan, O. Gutfleisch, Scr. Mater. 60, 764 (2009) |
[15] |
Y. Hong, Z.G. Qiu, Z.G. Zheng, G. Wang, H.Y. Yu, D.Y. Chen, G.B. Han, D.C. Zeng, J.P. Liu, Acta Mater. 164, 627 (2019)
DOI |
[16] | L. Weissitsch, M. Stückler, S. Wurster, J. Todt, P. Knoll, H. Krenn, R. Pippan, A. Bachmaier, Nanomaterials 12, 963 (2022) |
[17] | J.K. Fan, Q. Zheng, R. Bao, J.H. Yi, J. Du, J. Mater. Sci. Technol. 37, 181 (2020) |
[18] | J. Zhang, F. Wang, Y. Zhang, J. Song, Y. Zhang, B. Shen, J. Sun, J. Nanosci. Nanotechnol. 12, 1109 (2012) |
[19] | J. Zhang, Y.K. Takahashi, R. Gopalan, K. Hono, J. Magn. Magn. Mater. 310, 1 (2007) |
[20] | G.C. Hadjipanayis, J.M.D. Coey, Rare-Earth Iron Permanent Magnets, 2nd edn. (Clarendon Press, Oxford, 1996), p.286 |
[21] | H. Sepehri-Amin, J. Thielsch, J. Fischbacher, T. Ohkubo, T. Schrefl, O. Gutfleisch, K. Hono, Acta Mater. 126, 1 (2017) |
[22] | H. Nagel, A. Menth, IEEE Trans. Magn. 14, 671 (1978) |
[23] | W.M. Cheng, Y.F. Dai, H. Hu, X.M. Cheng, X.S. Miao, J. Electron. Mater. 41, 2178 (2012) |
[24] | J. Ding, P.G. McCormick, R. Street, J. Alloy. Compd. 191, 197 (1993) |
[25] | J. Ding, P.G. McCormick, R. Street, J. Magn. Mater. 123, L239(1993) |
[26] | Y.K. Takahashi, T. Ohkubo, K. Hono, J. Appl. Phys. 100, 053913 (2006) |
[27] | H.R. Lashgari, D. Chu, S. Xie, H. Sun, M. Ferry, S. Li, J. Non-Cryst. Solids 391, 61 (2014) |
[28] | O. Akdogan, H. Sepehri-Amin, N.M. Dempsey, T. Ohkubo, K. Hono, O. Gutfleisch, T. Schrefl, D. Givord, Adv. Electron. Mater. 1, 1500009 (2015) |
[29] | D.J. Craik, E.W. Hill, A.J. Harrison, IEEE Trans. Magn. 11, 1379 (1979) |
[30] | S. Li, L. Ma, J. Fan, J. Yang, Q. Zheng, B. Bian, J. Zhang, J. Du, J. Mater. Sci. Technol. 88, 183 (2021) |
[31] | L. Ma, W. Quan, J. Fan, Y. Chen, Q. Zheng, B. Bian, J. Zhang, J. Du, J. Mater. Sci. Technol. 144, 161 (2023) |
[32] | R. Skomski, J. Phys. Condens. Matter 15, R841 (2003) |
[33] | H. Nagel, J. Appl. Phys. 50, 1026 (1979) |
[34] | H. Kronmiiller, K.D. Durst, W. Ervens, W. Femengel, IEEE Trans. Magn. 20, 1569 (1984) |
[35] | G.C. Hadjipanayis, R.C. Harzelton, K.R. Lawless, L.S. Horton, IEEE Trans. Magn. 18, 1460 (1982) |
[1] | Nafiseh Mollaei, Seyed Mahmood Fatemi, Mohammad Reza Aboutalebi, Seyed Hossein Razavi, Wiktor Bednarczyk. Microstructure, Texture, Mechanical Properties, and Corrosion Behavior of Biodegradable Zn-0.2Mg Alloy Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 507-525. |
[2] | Hao Zhang, Le Zai, Xiaohuai Xue. Enhancing the Mechanical Properties Induced by Ta Microalloying in TIG-Welded Ti2AlNb-Based Intermetallic Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 419-434. |
[3] | Tianyi Zeng, Zirui Luo, Hao Chen, Wei Wang, Ke Yang. Flow Behavior and Dynamic Recrystallization Mechanism of CSS-42L Bearing Steel During Hot Compression Deformation [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 465-480. |
[4] | Gang Zeng, Hong Liu, Jing-Peng Xiong, Jian-Long Li, Yong Liu. Enhanced Grain Refining Effect of Mg-Zr Master Alloy on Magnesium Alloys via a Synergistic Strategy Involving Heterogeneous Nucleation and Solute-Driven Growth Restriction [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1354-1366. |
[5] | Ping Li, Shuangwu Xia, Junfu Dong, Liangwei Dai, Zhicheng Luo, Kemin Xue. Effect of Bimodal Quasicrystal Phase on the Dynamic Recrystallization of Mg-Zn-Gd Alloy during High-Pressure Torsion [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1128-1134. |
[6] | Xiang Kong, Yu Wang, Hong Xu, Haotian Fan, Yuewu Zheng, Beibei Xie. NbB2 Modified Al-Cu Alloys Fabricated by Freeze-Ablation Casting under High Cooling Rate Solidification [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 921-938. |
[7] | Chuan Rong, Jieren Yang, Xiaoliang Zhao, Ke Huang, Ying Liu, Xiaohong Wang, Dongdong Zhu, Ruirun Chen. Microstructure Recrystallization and Mechanical Properties of a Cold-Rolled TiNbZrTaHf Refractory High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 633-647. |
[8] | Hengrui Hu, Jiayu Qin, Yunpeng Zhu, Jinhui Wang, Xiaoqiang Li, Peipeng Jin. Hot Deformation Behavior and Microstructures Evolution of GNP-Reinforced Fine-Grained Mg Composites [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 407-424. |
[9] | Chengcheng Han, Yuna Wu, Hao Huang, Chen Chen, Huan Liu, Jinghua Jiang, Aibin Ma, Jing Bai, Hengcheng Liao. Effect of Glass Tube Suction Casting on Solidification Process and Si Refinement of Hypereutectic Al-Si Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(12): 2094-2105. |
[10] | Ke Qiao, Kuaishe Wang, Jia Wang, Zhengyang Hao, Kairui Xue, Jun Cai, Fengming Qiang, Wen Wang. Microstructure Evolution and Recrystallized Behavior of Friction Stir Welding Twin-Induced Plasticity Steel [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(11): 1947-1960. |
[11] | Shushen Guo, Yanhui Li, Yibing Zhang, Lu Yang, Wei Zhang. Reduction of High-Frequency Core Loss of a Fe77.2Si11B8.5Cu0.8Nb2.5 Soft Magnetic Nanocrystalline Alloy by Minor Alloying [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(11): 1984-1992. |
[12] | Dong-Dong Zuo, Jian Chang, Hai-Peng Wang. Phase Selection and Microstructure Evolution Dependance on Composition for Zr-Fe Eutectic Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(10): 1689-1702. |
[13] | Ping Huang, Yutong Shi, Wei Zhang, Suode Zhang, Yinglei Ren, Keqiang Qiu, Jianqiang Wang. Phase Evolution and Glass Formation in an Fe-Based Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1502-1510. |
[14] | Ronghe Gao, Feng Li, Huaqiu Du, Pengda Huo. Dynamic Recrystallization Mechanism and Texture Evolution during Interactive Alternating Extruded Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1292-1304. |
[15] | Guo-Dong Liu, Xue-Mei Luo, Ji-Peng Zou, Bin Zhang, Guang-Ping Zhang. Effects of Grain Size and Cryogenic Temperature on the Strain Hardening Behavior of VCoNi Medium-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 973-986. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||