Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (1): 45-53.DOI: 10.1007/s40195-020-01109-w
Previous Articles Next Articles
Meng Yan1,2, Cong Wang1, Tianjiao Luo1,2, Yingju Li1,2, Xiaohui Feng1,2, Qiuyan Huang1,2, Yuansheng Yang1()
Received:
2020-03-26
Revised:
2020-05-11
Accepted:
2020-05-25
Online:
2021-01-10
Published:
2021-01-28
Contact:
Yuansheng Yang
Meng Yan, Cong Wang, Tianjiao Luo, Yingju Li, Xiaohui Feng, Qiuyan Huang, Yuansheng Yang. Effect of Pulsed Magnetic Field on the Residual Stress of Rolled Magnium Alloy AZ31 Sheet[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 45-53.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Dimension of the specimen and the positions for stress measurementThe apparatus of PMF treatment is illustrated in Fig. 2. The apparatus is composed of a low-voltage pulsed power source, exciting coils, a stainless steel holder, and a cooling water system. The pulsed magnetic field generated by the exciting coils acted on the magnesium alloy AZ31 sheet sample. A cooling system was used to cool the coils and isolate the heat generated in the coils from the sample.
Fig. 2 Schematic illustration of PMF apparatusThe PMF voltage was fixed at 300 V and the treatment time was 60 minutes in the experiment. Besides, the PMF frequency was set at 2.5, 5.0, and 10.0 Hz to investigate the effect of the frequency on residual stress. The sample was placed in the center of the exciting coils for PMF treatment after the initial residual stress was tested.
Fig. 5 Effects of PMF frequency on RD and TD residual stress: a 2.5 Hz, b 5.0 Hz, c 10.0 Hz and d average and maximum reduction rate of residual stress
Frequency | Residual stress (MPa) | Reduction rate (%) | |
---|---|---|---|
Before treatment | After treatment | ||
2.5 Hz | - 50.3 ± 1.7 | - 47.0 ± 1.2 | 6.5 |
5.0 Hz | - 51.2 ± 2.5 | - 44.3 ± 1.4 | 13.3 |
10.0 Hz | - 52.5 ± 2.4 | - 42.9 ± 1.3 | 18.1 |
Table 1 Residual stress of samples treated with different frequencies Lorentz force
Frequency | Residual stress (MPa) | Reduction rate (%) | |
---|---|---|---|
Before treatment | After treatment | ||
2.5 Hz | - 50.3 ± 1.7 | - 47.0 ± 1.2 | 6.5 |
5.0 Hz | - 51.2 ± 2.5 | - 44.3 ± 1.4 | 13.3 |
10.0 Hz | - 52.5 ± 2.4 | - 42.9 ± 1.3 | 18.1 |
Temperature | Residual stress (MPa) | Reduction rate (%) | |
---|---|---|---|
Before treatment | After treatment | ||
47.0 °C | - 50.1 ± 2.2 | - 49.5 ± 1.5 | 1.2 |
64.5 °C | - 49.5 ± 1.8 | - 48.2 ± 1.4 | 2.6 |
73.8 °C | - 48.7 ± 2.0 | - 46.2 ± 1.2 | 5.1 |
Table 2 Residual stress of samples treated at different temperatures
Temperature | Residual stress (MPa) | Reduction rate (%) | |
---|---|---|---|
Before treatment | After treatment | ||
47.0 °C | - 50.1 ± 2.2 | - 49.5 ± 1.5 | 1.2 |
64.5 °C | - 49.5 ± 1.8 | - 48.2 ± 1.4 | 2.6 |
73.8 °C | - 48.7 ± 2.0 | - 46.2 ± 1.2 | 5.1 |
[1] | T. Xu, Y. Yang, X. Peng, J. Song, F.S. Pan , J. Magnes. Alloys 7, 536 ( 2019) |
[2] | H. Zengin, Y. Turen, M.E. Turan, F. Aydın, Acta Metall. Sin. (Engl. Lett.) 32, 1309( 2019) |
[3] | T. Tu, X.H. Chen, J. Chen, C.Y. Zhao, F.S. Pan, Acta Metall. Sin. (Engl. Lett.) 32, 23( 2019) |
[4] | S.J. Meng, H. Yu, S.D. Fan, Q.Z. Li, S.H. Park, J.S. Suh, Y.M. Kim, X.L. Nan, M.Z. Bian, F.X. Yin, W.M. Zhao, B.S. You, K.S. Shin, Acta Metall. Sin. (Engl. Lett.) 32, 145( 2019) |
[5] | Y. Bai, W.L. Cheng, S.C. Ma, J. Zhang, C. Guo, Y. Zhang, Acta Metall. Sin.(Engl. Lett.) 31, 487( 2018) |
[6] | W.C. Dong, D.B. Gao, S.P. Lu, Acta Metall. Sin. (Engl. Lett.) 32, 618( 2019) |
[7] | P.J. Withers, H.K.D.H. Bhadeshia , Mater. Sci. Technol. 17, 366( 2001) |
[8] | P.J. Withers , Rep. Prog. Phys. 70, 2211( 2007) |
[9] | S.Q. Xiang, X.F. Zhang, Acta Metall. Sin. (Engl. Lett.) 33, 281( 2020) |
[10] | T. Hosaka, S. Yoshihara, I. Amanina, B.J. MacDonald , Procedia Eng. 184, 432( 2017) |
[11] | B. Chen, A. Skouras, Y.Q. Wang, J.F. Kelleher, S.Y. Zhang, D.J. Smith, P.E.J. Flewitt, M.J. Pavier, Mater. Sci. Eng. A 590, 374 ( 2014) |
[12] | J.S. Wang, C.C. Hsieh, C.M. Lin, E.C. Chen, C.W. Kuo, W. Wu , Mater. Sci. Eng. A 605, 98 ( 2014) |
[13] | M.C. Sun, Y.H. Sun, R.K. Wang , Mater. Lett. 58, 299( 2004) |
[14] | X.C. Zhao, Y.D. Zhang, H.W. Zhang, Q. Wu, Acta Metall. Sin. (Engl. Lett.) 21, 289( 2008) |
[15] | D.A. Lados, D. Apelian, L. Wang , Mater. Sci. Eng. A 527, 3159 ( 2010) |
[16] | W.D.S. Mattos, G.E. Totten, L.D.C.F. Canale, Mater. Perform. Charact. 6, 894( 2017) |
[17] | Y. Lian, P. Ji, J. Zhang, X. Yuan, W. Xu, Y. Zhao, J. Mo, L. Zheng, S. Dou , J. Magnes. Alloys 7, 186 ( 2019) |
[18] | C. Wang, T. Luo, J. Zhou, Y. Yang , Mater. Sci. Eng. A 722, 14 ( 2018) |
[19] | X.P. Ma, Y.S. Yang, B. Wang , Int. J. Heat Mass Transf. 52, 5285( 2009) |
[20] |
A.L. Lu, F. Tang, X.J. Luo, J.F. Mei, H.Z. Fang , J. Mater. Process. Technol. 74, 259( 1998)
DOI URL |
[21] |
B.E. Klamecki , J. Mater. Process. Technol. 141, 385( 2003)
DOI URL |
[22] | S. Wu, A. Lu, H. Zhao, H. Fang, F. Tang , Mater. Sci. Eng. A 328, 133 ( 2002) |
[23] | Z.P. Cai, X. Huang , Mater. Sci. Eng. A 528, 6287 ( 2011) |
[24] | Y.L. Song, L. Hua , J. Mater. Sci. Technol. 28, 803( 2012) |
[25] | G. Tang, Z. Xu, M. Tang, X. Chen, H. Zhou, A. Lu , Mater. Sci. Eng. A 398, 108 ( 2005) |
[26] | X. Yuan, J. Zhang, Y. Lian, C. Du, W. Xu, Y. Zhao, J. Mo , J. Magnes. Alloys 6, 238 ( 2018) |
[27] | M. Kamaya, A.J. Wilkinson, J.M. Titchmarsh , Nucl. Eng. Des. 235, 713( 2005) |
[28] | R.R. Shen, P. Efsing , Ultramicroscopy 184, 156 ( 2018) |
[29] | S. Xiang, X. Zhang , Mater. Sci. Eng. A 761, 138026 ( 2019) |
[30] | Q. Shao, J. Kang, Z. Xing, H. Wang, Y. Huang, G. Ma, H. Liu , J. Magn. Magn. Mater. 476, 218( 2019) |
[31] | L.P. Ma, W.X. Zhao, Z.Q. Liang, X.B. Wang, L.J. Xie, L. Jiao., T.F. Zhou , Mater. Sci. Eng. A 609, 16 ( 2014) |
[32] | K.L. Zhang, Y.J. Li, Y.S. Yang, Acta Metall. Sin. (Engl. Lett.) (2020). https://doi.org/10.1007/s40195-020-01048-6 |
[33] | K.L. Zhang, Y.J. Li, Y.S. Yang , J. Mater. Sci. Technol. 48, 9( 2020) |
[34] | W.B. Hutchinson, M.R. Barnett , Scr. Mater. 63, 737( 2010) |
[35] | H.L. Kim, J.S. Park, Y.W. Chang , Mater. Sci. Eng. A 540, 198 ( 2012) |
[36] | J. Wang, J.M. Molina-Aldareguía, J. Llorca, Acta Mater. 188, 215( 2020) |
[37] | A. Lombardi, D. Sediako, A. Machin, C. Ravindran, R. MacKay , Mater. Sci. Eng. A 697, 238 ( 2017) |
[1] | B. Mehdi, R. Badji, V. Ji, B. Alili, D. Bradai, W. Bedjaoui, F. Deschaux-Beaume, F. Brisset. Unveiling the Residual Stresses, Local Micromechanical Properties and Crystallographic Texture in a Ti-6Al-4V Weld Joint [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 997-1006. |
[2] | Yang Liu, Lei Wang, Kaiyue Yang, Xiu Song. Effects of Thermally Assisted Warm Laser Shock Processing on the Microstructure and Fatigue Property of IN718 Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(12): 1645-1656. |
[3] | Massab Junaid, Fahd Nawaz Khan, Tauheed Shahbaz, Haris saleem, Julfikar Haider. Influence of Filler on the Microstructure, Mechanical Properties and Residual Stresses in TIG Weldments of Dissimilar Titanium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1395-1406. |
[4] | Siqi Xiang, Xinfang Zhang. Residual Stress Removal Under Pulsed Electric Current [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 281-289. |
[5] | Kuiliang Zhang, Yingju Li, Yuansheng Yang. Simulation of the Influence of Pulsed Magnetic Field on the Superalloy Melt with the Solid-Liquid Interface in Directional Solidification [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1442-1454. |
[6] | Wen-Chao Dong, Dian-Bao Gao, Shan-Ping Lu. Numerical Investigation on Residual Stresses of the Safe-End/Nozzle Dissimilar Metal Welded Joint in CAP1400 Nuclear Power Plants [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(5): 618-628. |
[7] | Huseyin Zengin, Yunus Turen, Muhammet Emre Turan, Fatih Ayd?n. Evolution of Microstructure, Residual Stress, and Tensile Properties of Mg-Zn-Y-La-Zr Magnesium Alloy Processed by Extrusion [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(11): 1309-1319. |
[8] | Lin Jiang, Liang Zhang, Zhi-Quan Liu. Optimal Design of Co/In/Cu Sputtering Target Assembly Using Finite Element Method and Taguchi Method [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(11): 1407-1414. |
[9] | Zhong-Yuan Feng, Xin-Jie Di, Shi-Pin Wu, Dong-Po Wang, Xiao-Qian Liu. Comparison of Microstructure and Residual Stress Between TIG and MAG Welding Using Low Transformation Temperature Welding Filler [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(3): 263-272. |
[10] | Ye-Jun Zhu, Wen-Feng Ding, Ze-Yu Zhao, Yu-Can Fu, Hong-Hua Su. Compressive Strength and Interface Microstructure of PCBN Grains Brazed with High-Frequency Induction Heating Method [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(7): 641-649. |
[11] | Z.G. Liu, T.I. Wong, W. Huang, N. Sridhar, S.J. Wang. Effect of Surface Polishing Treatment on the Fatigue Performance of Shot-Peened Ti-6Al-4V Alloy [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(7): 630-640. |
[12] | Wenbo Zhao, T.Warren Liao, Lampros Kompotiatis. Stress and Springback Analyses of API X70 Pipeline Steel Under 3-Roller Bending via Finite Element Method [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(5): 470-482. |
[13] | Sheng-Sheng Zhao,Yan-Hui Zhao,Lv-Sha Cheng,Vladimir Viktorovich Denisov,Nikolay Nikolaevich Koval,Bao-Hai Yu,Hai-Juan Mei. Effects of Substrate Pulse Bias Duty Cycle on the Microstructure and Mechanical Properties of Ti-Cu-N Films Deposited by Magnetic Field-Enhanced Arc Ion Plating [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(2): 176-184. |
[14] | Neng-Yong Ye, Ming Cheng, Shi-Hong Zhang. Effect of Cold Rolling Parameters on the Longitudinal Residual Stress Distribution of GH4169 Alloy Sheet [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(12): 1510-1517. |
[15] | Zuoyan Ye, Daoxin Liu, Chongyang Li, Xiaoming Zhang, Zhi Yang, Mingxia Lei. Effect of Shot Peening and Plasma Electrolytic Oxidation on the Intergranular Corrosion Behavior of 7A85 Aluminum Alloy [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(4): 705-713. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||