Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (5): 793-807.DOI: 10.1007/s40195-023-01655-z
Previous Articles Next Articles
Jinpeng Hu1, Tao Sun1, Fujun Cao1, Yifu Shen1(), Zhiyuan Yang1, Chan Guo1
Received:
2023-08-24
Revised:
2023-10-15
Accepted:
2023-11-04
Online:
2024-05-10
Published:
2024-06-14
Contact:
Yifu Shen, shenyifu0501@gmail.com
Jinpeng Hu, Tao Sun, Fujun Cao, Yifu Shen, Zhiyuan Yang, Chan Guo. Enhanced Strength-Ductility Synergy in Submerged Friction Stir Processing ER2319 Alloy Manufactured by Wire-Arc Additive Manufacturing via Creating Ultrafine Microstructure[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 793-807.
Add to citation manager EndNote|Ris|BibTeX
Cu | Mg | Mn | Si | Zr | Zn | Ti | Fe | Al | |
---|---|---|---|---|---|---|---|---|---|
2A12 | 3.8-4.9 | 1.2-1.8 | 0.3-0.9 | 0.5 | 0.3 | 0.3 | 0.15 | 0.5 | Bal. |
ER2319 | 5.96 | 0.3 | 0.3 | 0.2 | 0.1 | 0.1 | 0.17 | 0.3 | Bal. |
Table 1 Chemical composition of ER2319 wire and 2A12 substrate (wt%)
Cu | Mg | Mn | Si | Zr | Zn | Ti | Fe | Al | |
---|---|---|---|---|---|---|---|---|---|
2A12 | 3.8-4.9 | 1.2-1.8 | 0.3-0.9 | 0.5 | 0.3 | 0.3 | 0.15 | 0.5 | Bal. |
ER2319 | 5.96 | 0.3 | 0.3 | 0.2 | 0.1 | 0.1 | 0.17 | 0.3 | Bal. |
Current (A) | Voltage (V) | Speed (m/min) | Shielding gas flux (L/min) | Inter-layer cooling time (s) | Number of layers |
---|---|---|---|---|---|
130 | 18.2 | 0.6 | 20 | 90 | 60 |
Table 2 Deposition parameters of WAAM
Current (A) | Voltage (V) | Speed (m/min) | Shielding gas flux (L/min) | Inter-layer cooling time (s) | Number of layers |
---|---|---|---|---|---|
130 | 18.2 | 0.6 | 20 | 90 | 60 |
Fig. 1 a Physical and schematic drawings of as deposited; b physical and schematic drawings of FSP-ed sample and physical drawing of the stirring tool; c schematic illustration of preparation process; d sample preparation methods for microstructural characterization and properties testing. Note the normal direction, transverse direction and welding direction are defined as ND, TD and WD, respectively. The transverse tensile sample and longitudinal tensile sample are defined as TS-T and TS-L
Fig. 2 Microstructure and composition analysis of the BM: a low magnification SEM; b high magnification SEM; c, d EDS maps of (b) showing the distribution of Al and Cu elements, respectively
Fig. 3 Grain structure of the BM: a EBSD IPF map; b grain size distribution; c grain boundary map and d misorientation angle distribution. For the boundary misorientation, red lines: between 2° and 15°, black lines: > 15°
Fig. 5 Microstructure and composition analysis of the AFSP-ed samples: a low magnification SEM; b high magnification SEM; c and d EDS maps of (b) showing the distribution of Al and Cu elements, respectively. The microstructure and composition analysis of the SFSP-ed samples: e low magnification SEM; f high magnification SEM; g and h EDS maps of (f) showing the distribution of Al and Cu elements, respectively
Fig. 10 a XRD patterns of BM, AFSW-ed sample and SFSW-ed sample, b Williamson-Hall plots and linear fits for Al phases based on various reflections obtained from XRD results. Note the residual stress level is reflected by the value of slope e
Fig. 14 Schematic diagram of the deformation processes for both samples. For the BM: a the initial state; b the formation and increase of pores in the early stage of plastic deformation; c the enlargement and interconnection of pore in the later stage of plastic deformation; d the occurrence of intercrystalline fracture in the final stage. For the FSP-ed samples: e the initial state; f the formation of microvoids around the θ particles in the stage of plastic deformation; g the occurrence of necking and the rapid propagation of crack in the stage of yielding stage; h the occurrence of transcrystalline fracture in the final stage
[1] | Y. Guo, Q. Han, J. Hu, Acta Metall. Sin. -Engl. Lett. 35, 475 (2022) |
[2] | S. Li, J. Ning, G.F. Zhang, L.J. Zhang, J. Wu, L.X. Zhang,Vacuum 184, 109860 (2021) |
[3] | N. Li, C.L. Jia, Z.W. Wang, Acta Metall. Sin. -Engl. Lett. 33, 947956 (2020) |
[4] | D. Jafari, T.H.J. Vaneker, I. Gibson, Mater. Des. 202, 109471 (2021) |
[5] | X.J. Zhang, W.Y. Zhao, Y.H. Wei, J.W. Long, Sci. Technol. Weld. Join. 28, 829 (2023) |
[6] | J.L. Gu, J.L. Ding, S.W. Williams, H.M. Gu, P.H. Ma, Y.C. Zhai, J. Mater. Process. Technol. 230, 26 (2016) |
[7] | S.C. Han, U.M. Chaudry, H.M.R. Tariq, T.S. Jun, Mater. Lett. 349, 134881 (2023) |
[8] | F.J. Cao, T. Sun, J.P. Hu, Mater. Des. 225, 111492 (2023) |
[9] | N. Li, C.L. Jia, Z.W. Wang, Acta Metall. Sin. -Engl. Lett. 33, 947 (2020) |
[10] | K. Ramesh, S. Pradeep, V. Pancholi, Metall. Mater. Trans. Part A 43, 4311 (2012) |
[11] | P. He, X.W. Bai, H.O. Zhang, Mater. Lett. 330, 133365 (2023) |
[12] | J.X. Wei, C.S. He, M.F. Qie, Y. Li, Y. Zhao,Vacuum 203, 111264 (2022) |
[13] | J.Q. Zhang, Y.F. Shen, X. Yao, H.S. Xu, B. Li, Mater. Des. 64, 74 (2014) |
[14] | E. Joshani, B. Beidokhti, A. Davodi, M. Amelzadeh, J. Alloys Metall. Syst. 3, 100017 (2023) |
[15] | L. Liu, W.H. Xu, Y.Q. Zhao, Z.C. Lin, Z. Liu, J. Mater. Res. Technol. 25, 1055 (2023) |
[16] | S.S. Sabari, S. Malarvizhi, V. Balasubramanian, J. Mater. Process. Technol. 37, 286 (2016) |
[17] | X.C. Luo, H.L. Liu, L.M. Kang, Acta Metall. Sin. -Engl. Lett. 35, 757 (2022) |
[18] | H.S. Chen, H.H. Nie, J. Zhou, W.X. Wang, J. Nucl. Mater. 517, 393 (2019) |
[19] | W. Wang, S.Y. Chen, K. Qiao, Acta Metall. Sin. -Engl. Lett. 35, 703 (2022) |
[20] | M. Saadatmand, J.A. Mohandesi, Acta Metall. Sin. -Engl. Lett. 28, 584 (2015) |
[21] | M.A. Wahid, Z.A. Khan, A.N. Siddiquee, Trans. Nonferrous Metals Soc. Today 28, 193 (2018) |
[22] | G.M. Xie, H.B. Cui, Z.A. Luo, Mater. Sci. Eng. A 704, 311 (2017) |
[23] | R. Kesharwani, K.K. Jha, M.A. Anshari, M. Imam, C. Sarkar, Mater. Today Commun. 33, 104785 (2022) |
[24] | G.Q. Huang, J. Wu, W.T. Hou, Mater. Sci. Eng. A 806, 140831 (2021) |
[25] | Y. Mao, L. Ke, Y. Chen, J. Mater. Sci. Technol. 34, 228 (2018) |
[26] |
L.H. Wu, X.B. Hu, X.X. Zhang, Y.Z. Li, Z.Y. Ma, Acta Mater. 166, 371 (2019)
DOI |
[27] | M. Hajian, A. Abdollah-zadeh, S.S. Rezaei-Nejad, Mater. Des. 67, 82 (2015) |
[28] | P.Y. Zhi, G. Bo, Q.L. Qing,Materials 11, 1399 (2018) |
[29] | H.J. Jiang, B. Zhang, C.Y. Liu, Acta Metall. Sin. -Engl. Lett. 32, 1135 (2019) |
[30] | D. Chen, L.L. Wang, S. He, F.Y. Lyu, X.H. Zhan, Mater. Sci. Technol. 38, 1519 (2022) |
[31] | R. Kaibyshev, K. Shipilova, F. Musin, Y. Motohashi, Mater. Sci. Eng. A 396, 341 (2005) |
[32] | R.W. Fonda, K.E. Knipling, J.F. Bingert, Scr. Mater. 58, 343 (2008) |
[33] | X. Li, X.T. Li, Mater. Lett. 344, 134461 (2023) |
[34] | Q. Yang, L.R. Zhao, Mater. Charact. 59, 1285 (2008) |
[35] | N. An, S. Shuai, T. Hu, Acta Metall. Sin. -Engl. Lett. 35, 25 (2022) |
[36] | W. Woo, T. Ungar, Z. Feng, K. Kenik, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 41, 1210 (2010) |
[37] | S. Jiang, H. Wang, Y. Wu, X. Liu,Nature 544, 460 (2017) |
[38] | J. Aufrecht, A. Leineweber, J. Foct, Philos. Mag. 88, 1835 ( 2008) |
[39] | C.E. Krill, R. Birringer, Matter. Struct. Defects Mech. Prop. 77, 621 (1998) |
[40] | M. Peel, A. Steuwer, M. Preuss, P.J. Withers, Acta Mater. 51, 4791 (2003) |
[41] | O. Hatamleh, I.V. Rivero, A. Maredia, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 39, 2867 (2008) |
[42] | R.Z. Yu, S.F. Yu, Z.Y. Yu, B. Zheng, J. Mater. Process. Technol. 316, 117951 (2023) |
[43] | X.J. Zhang, Y.R. He, Y.H. Wei, CIRP, J. Manuf. Sci. Technol. 46, 230 (2023) |
[44] | J. Wei, C. He, M. Qie, J. Mater. Process. Technol. 311, 117809 (2023) |
[45] | Z.N. Wang, X. Lin, L.L. Wang, Y. Cao, Y.H. Zhou, W.D. Huang, Addit. Manuf. 47, 102298 (2021) |
[46] | R.D. Adams, T. Brearley, E. Nehammer,Proc. Inst. Mech. Eng. Pt. L: J. Mater. Des. Appl. 235, 1477 (2021) |
[47] | X. Liu, Y. Sun, T. Nagira, Acta Metall. Sin. -Engl. Lett. 33, 1001 (2020) |
[48] | J. Zhang, H. Liu, X. Chen, Acta Metall. Sin. -Engl. Lett. 35, 727 (2022) |
[1] | Kun Yi, Siqi Xiang, Mengcheng Zhou, Xinfang Zhang, Furui Du. Altering the Residual Stress in High-Carbon Steel through Promoted Dislocation Movement and Accelerated Carbon Diffusion by Pulsed Electric Current [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1511-1522. |
[2] | Shangzhou Zhang, Yuankang Wang, Bing Zhou, Fanchao Meng, Hua Zhang, Shujun Li, Qingmiao Hu, Li Zhou. Finite Element Prediction of Residual Stress in Rhombic Dodecahedron Ti-6Al-4V Titanium Alloy Additively Manufactured by Electron Beam Melting [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 35-47. |
[3] | Yueling Guo, Qifei Han, Jinlong Hu, Xinghai Yang, Pengcheng Mao, Junsheng Wang, Shaobo Sun, Zhi He, Jiping Lu, Changmeng Liu. Comparative Study on Wire-Arc Additive Manufacturing and Conventional Casting of Al-Si Alloys: Porosity, Microstructure and Mechanical Property [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 475-485. |
[4] | Naying An, Sansan Shuai, Tao Hu, Chaoyue Chen, Jiang Wang, Zhongming Ren. Application of Synchrotron X-Ray Imaging and Diffraction in Additive Manufacturing: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 25-48. |
[5] | B. Mehdi, R. Badji, V. Ji, B. Alili, D. Bradai, W. Bedjaoui, F. Deschaux-Beaume, F. Brisset. Unveiling the Residual Stresses, Local Micromechanical Properties and Crystallographic Texture in a Ti-6Al-4V Weld Joint [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 997-1006. |
[6] | Yang Liu, Lei Wang, Kaiyue Yang, Xiu Song. Effects of Thermally Assisted Warm Laser Shock Processing on the Microstructure and Fatigue Property of IN718 Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(12): 1645-1656. |
[7] | Massab Junaid, Fahd Nawaz Khan, Tauheed Shahbaz, Haris saleem, Julfikar Haider. Influence of Filler on the Microstructure, Mechanical Properties and Residual Stresses in TIG Weldments of Dissimilar Titanium Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1395-1406. |
[8] | Meng Yan, Cong Wang, Tianjiao Luo, Yingju Li, Xiaohui Feng, Qiuyan Huang, Yuansheng Yang. Effect of Pulsed Magnetic Field on the Residual Stress of Rolled Magnium Alloy AZ31 Sheet [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 45-53. |
[9] | Siqi Xiang, Xinfang Zhang. Residual Stress Removal Under Pulsed Electric Current [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 281-289. |
[10] | Chao Chen, Chenglei Fan, Zeng Liu, Xiaoyu Cai, Sanbao Lin, Yimin Zhuo. Microstructure Evolutions and Properties of Al-Cu Alloy Joint in the Pulsed Power Ultrasonic-Assisted GMAW [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1397-1406. |
[11] | Wen-Chao Dong, Dian-Bao Gao, Shan-Ping Lu. Numerical Investigation on Residual Stresses of the Safe-End/Nozzle Dissimilar Metal Welded Joint in CAP1400 Nuclear Power Plants [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(5): 618-628. |
[12] | Huseyin Zengin, Yunus Turen, Muhammet Emre Turan, Fatih Ayd?n. Evolution of Microstructure, Residual Stress, and Tensile Properties of Mg-Zn-Y-La-Zr Magnesium Alloy Processed by Extrusion [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(11): 1309-1319. |
[13] | Lin Jiang, Liang Zhang, Zhi-Quan Liu. Optimal Design of Co/In/Cu Sputtering Target Assembly Using Finite Element Method and Taguchi Method [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(11): 1407-1414. |
[14] | Zhong-Yuan Feng, Xin-Jie Di, Shi-Pin Wu, Dong-Po Wang, Xiao-Qian Liu. Comparison of Microstructure and Residual Stress Between TIG and MAG Welding Using Low Transformation Temperature Welding Filler [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(3): 263-272. |
[15] | Ye-Jun Zhu, Wen-Feng Ding, Ze-Yu Zhao, Yu-Can Fu, Hong-Hua Su. Compressive Strength and Interface Microstructure of PCBN Grains Brazed with High-Frequency Induction Heating Method [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(7): 641-649. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||