Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (7): 1175-1183.DOI: 10.1007/s40195-021-01360-9
Previous Articles Next Articles
Chenchen Xiong1,2, Jing Bai1,2,4(), Yansong Li1,2, Jianglong Gu3(
), Xinzeng Liang1, Ziqi Guan1, Yudong Zhang5, Claude Esling5, Xiang Zhao1, Liang Zuo1
Received:
2021-08-08
Revised:
2021-09-07
Accepted:
2021-09-23
Online:
2022-07-10
Published:
2021-12-03
Contact:
Jing Bai,Jianglong Gu
About author:
Jianglong Gu, gujianglong@ysu.edu.cnChenchen Xiong, Jing Bai, Yansong Li, Jianglong Gu, Xinzeng Liang, Ziqi Guan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. First-Principles Investigation on Phase Stability, Elastic and Magnetic Properties of Boron Doping in Ni-Mn-Ti Alloy[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1175-1183.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 a Three possible configurations occupying interstitial sites. T, O-1, and O-2 indicate the tetragonal and the two octahedral interstitial sites, respectively. b Formation energies of various occupation manners (BNi, BMn+, BMn-, BTi, T, O-1, and O-2) for the Ni2Mn1.5Ti0.5 alloy with AFA state
![]() |
Table 1 Formation energies and formation energy difference of austenite and martensite for the undoped, BMn-, BMn+, and O-1 occupation manners with different magnetism; formation energies of 2O-1 occupation manner with different magnetism and distributed manner
![]() |
System | C11 (GPa) | C12 (GPa) | C44 (GPa) | B (GPa) | G (GPa) | Y (GPa) | ν | B/G | pc (GPa) | |
---|---|---|---|---|---|---|---|---|---|---|
Ni2MnIn | PAW [ | 150.89 | 132.76 | 95.95 | 138.81 | 43.82 | 118.94 | 0.38 | 3.17 | 36.81 |
Ni2MnGa | PAW [ | 163.6 | 155.4 | 106.7 | 158.1 | 45.1 | 123.7 | 0.37 | 3.5 | 48.7 |
(Ni2MnGa)9.9922B0.0078 | PAW [ | 257.9 | 89.6 | 119.3 | 145.7 | 98.2 | 240.6 | 0.2 | 1.5 | -29.7 |
Ni2MnTi | PAW [ | 153.89 | 146.14 | 77.27 | 148.72 | 33.23 | 92.78 | 0.40 | 4.48 | 68.87 |
Ni2MnTi | 159.71 | 152.91 | 75.3 | 155.18 | 32.16 | 90.25 | 0.40 | 4.83 | 77.61 | |
Ni2Mn0.5TiB0.5(BMn+) | This work | 145.78 | 166.88 | 83.05 | - | - | - | - | - | - |
Ni2MnTiB0.5(O-1 doping) | 232.70 | 123.85 | 113.53 | 160.13 | 78.07 | 201.46 | 0.29 | 2.05 | 10.32 |
Table 2 Elastic constants and related mechanical properties of Ni-Mn-based alloys
System | C11 (GPa) | C12 (GPa) | C44 (GPa) | B (GPa) | G (GPa) | Y (GPa) | ν | B/G | pc (GPa) | |
---|---|---|---|---|---|---|---|---|---|---|
Ni2MnIn | PAW [ | 150.89 | 132.76 | 95.95 | 138.81 | 43.82 | 118.94 | 0.38 | 3.17 | 36.81 |
Ni2MnGa | PAW [ | 163.6 | 155.4 | 106.7 | 158.1 | 45.1 | 123.7 | 0.37 | 3.5 | 48.7 |
(Ni2MnGa)9.9922B0.0078 | PAW [ | 257.9 | 89.6 | 119.3 | 145.7 | 98.2 | 240.6 | 0.2 | 1.5 | -29.7 |
Ni2MnTi | PAW [ | 153.89 | 146.14 | 77.27 | 148.72 | 33.23 | 92.78 | 0.40 | 4.48 | 68.87 |
Ni2MnTi | 159.71 | 152.91 | 75.3 | 155.18 | 32.16 | 90.25 | 0.40 | 4.83 | 77.61 | |
Ni2Mn0.5TiB0.5(BMn+) | This work | 145.78 | 166.88 | 83.05 | - | - | - | - | - | - |
Ni2MnTiB0.5(O-1 doping) | 232.70 | 123.85 | 113.53 | 160.13 | 78.07 | 201.46 | 0.29 | 2.05 | 10.32 |
Phase | Lattice parameters | Concentrations of B octahedral interstices | |||
---|---|---|---|---|---|
x = 0.00 | x = 0.03 | x = 0.06 (aggregated) | x = 0.09 | ||
Austenite | a = b = c (Å) | 5.8483 5.8473 [ | 5.8829 | 5.9285 | 5.9704 |
NM Martensite | a (Å) | 4.4977 | 4.5075 | 4.5456 | 4.5021 |
b (Å) | 4.1757 | 4.2284 | 4.2311 | 4.4813 | |
c (Å) | 5.1234 | 5.1619 | 5.2511 | 5.1209 |
Table 3 Optimized lattice parameters of austenite and NM martensite in the (Ni2Mn1.5Ti0.5)1-xBx (x = 0.00, 0.03, 0.06, and 0.09) alloys
Phase | Lattice parameters | Concentrations of B octahedral interstices | |||
---|---|---|---|---|---|
x = 0.00 | x = 0.03 | x = 0.06 (aggregated) | x = 0.09 | ||
Austenite | a = b = c (Å) | 5.8483 5.8473 [ | 5.8829 | 5.9285 | 5.9704 |
NM Martensite | a (Å) | 4.4977 | 4.5075 | 4.5456 | 4.5021 |
b (Å) | 4.1757 | 4.2284 | 4.2311 | 4.4813 | |
c (Å) | 5.1234 | 5.1619 | 5.2511 | 5.1209 |
Fig. 3 a Formation energies of austenite with different concentrations of B octahedral interstices for AFA and FA states; b formation energies of the (Ni2Mn1.5Ti0.5)1-xBx (x = 0.00, 0.03, 0.06, and 0.09) alloys for AFA and AFM phases; c Ef difference between austenite and martensite in the (Ni2Mn1.5Ti0.5)1-xBx (x = 0.00, 0.03, 0.06, and 0.09) alloys
Fig. 5 a Total magnetic moment of austenite and martensite for the (Ni2Mn1.5Ti0.5)1-xBx (x = 0.00, 0.03, 0.06, and 0.09) alloys; atomic magnetic moment in b1 austenite and b2 martensite of the (Ni2Mn1.5Ti0.5)1-xBx (x = 0.00, 0.03, 0.06, and 0.09) alloys
[1] |
R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida, Nature 439,957 (2006)
DOI URL |
[2] |
S.Y. Yu, Z.X. Cao, L. Ma, G.D. Liu, J.L. Chen, G.H. Wu, B. Zhang, X.X. Zhang, Appl. Phys. Lett. 91, 102507 (2007)
DOI URL |
[3] |
M.R. Wuttig, K. Tsuchiya, R.D. James, J. Appl. Phys. 87, 4707 (2000)
DOI URL |
[4] |
J.A. Monroe, I. Karaman, B. Basaran, W. Ito, R.Y. Umetsu, R. Kainuma, K. Koyama, Y.I. Chumlakov, Acta. Mater. 60, 6883 (2012)
DOI URL |
[5] |
P.J. Webster, K. R.A. Ziebeck, S.L. Town, M.S. Peak, Philos. Mag. B 49,295 (1984)
DOI URL |
[6] |
J.I. Pérez-Landazábal, V. Recarte, V. Sánchez-Alarcos, C. Gómez-Polo, E. Cesari, Appl. Phys. Lett. 102, 101908 (2013)
DOI URL |
[7] |
R. Kainuma, Y. Imano, W. Ito, H. Morito, Y. Sutou, K. Oikawa, A. Fujita, K. Ishida, S. Okamoto, O. Kitakami, T. Kanomata, Appl. Phys. Lett. 88, 192513 (2006)
DOI URL |
[8] |
F.X. Hu, B.G. Shen, J.R. Sun, G.H. Wu, Phys. Rev. B 64,132412 (2001)
DOI URL |
[9] |
J. Du, Q. Zheng, W.J. Ren, W.J. Feng, X.G. Liu, Z.D. Zhang, J. Phys. D Appl. Phys. 40, 5523 (2007)
DOI URL |
[10] |
J. Liu, T. Gottschall, K.P. Skokov, J.D. Moore, O. Gutfleisch, Nat. Mater. 11, 620 (2012)
DOI URL |
[11] |
T. Block, C. Felser, G. Jakob, J. Ensling, B. Mühling, P. Gütlich, R.J. Cava, J. Solid. State. Chem. 176, 646 (2003)
DOI URL |
[12] |
Z.H. Liu, H. Liu, X.X. Zhang, X.K. Zhang, J.Q. Xiao, Z.Y. Zhu, X.F. Dai, G.D. Liu, J.L. Chen, G.H. Wu, J. Appl. Phys. Lett. 86, 182507 (2005)
DOI URL |
[13] |
S.Y. Yu, Z.H. Liu, G.D. Liu, J.L. Chen, Z.X. Cao, G.H. Wu, B. Zhang, X.X. Zhang, Appl. Phys. Lett. 89, 162503 (2006)
DOI URL |
[14] |
H.L. Yan, L.D. Wang, H.X. Liu, X.M. Huang, N. Jia, Z.B. Li, B. Yang, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, Mater. Des. 184, 108180 (2019)
DOI URL |
[15] |
S. Roy, E. Blackburn, S.M. Valvidares, M.R. Fitzsimmons, S.C. Vogel, M. Khan, I. Dubenko, S. Stadler, N. Ali, S.K. Sinha, Phys. Rev. B 79,235127 (2009)
DOI URL |
[16] |
L.F. Li, Y.L. Wang, S.Y. Xie, X.B. Li, Y.Q. Wang, R.T. Wu, H.B. Sun, S.B. Zhang, H.J. Gao, Nano Lett. 13, 4671 (2013)
DOI URL |
[17] |
Z.Y. Wei, E.K. Liu, J.H. Chen, Y. Li, G.D. Liu, H.Z. Luo, X.K. Xi, H.W. Zhang, W.H. Wang, G.H. Wu, Appl. Phys. Lett. 107, 022406 (2015)
DOI URL |
[18] |
Z.Q. Guan, J. Bai, J.L. Gu, X.Z. Liang, D. Liu, X.J. Jiang, R.K. Huang, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, J. Mater. Sci. Technol. 68, 103 (2021)
DOI URL |
[19] |
D.Y. Cong, W.X. Xiong, A. Planes, Y. Ren, L. Mañosa, P.Y. Cao, Z.H. Nie, X.M. Sun, Z. Yang, X.F. Hong, Y.D. Wang, Phys. Rev. Lett. 122, 255703 (2019)
DOI URL |
[20] |
S. Kumar, R. Desai, J. Mater. Eng. Perform. 28, 6228 (2019)
DOI URL |
[21] | Y.L. Gao, X.X. Xue, H. Yang, Acta Metall. Sin. -Engl. Lett. 28, 931 (2015) |
[22] |
G.B. Narasimha, S.M. Murigendrappa, J. Alloy. Compd. 823, 153733 (2020)
DOI URL |
[23] | P. Öztürk, A. Hitit, Acta Metall. Sin. -Engl. Lett. 28, 733 (2015) |
[24] |
X. Zhang, Q.S. Liu, X.S. Zeng, J.H. Sui, W. Cai, H.B. Wang, Y. Feng, Intermetallics 68,113 (2016)
DOI URL |
[25] |
Z. Yang, D.Y. Cong, X.M. Sun, Z.H. Nie, Y.D. Wang, Acta Mater. 127, 33 (2017)
DOI URL |
[26] | A. Aznar, A. Gràcia-Condal, A. Planes, P. Lloveras, Phys. Rev. Mater. 3, 044406 (2019) |
[27] |
J. Hafner, Acta Mater. 48, 71 (2000)
DOI URL |
[28] |
G. Kresse, D. Joubert, Phys. Rev. B 59,1758 (1999)
DOI URL |
[29] |
P.E. Blöchl, Phys. Rev. B 50,17953 (1999)
DOI URL |
[30] |
G. K.G. Kern, J. Hafner, Phys. Rev. B 59,8551 (1999)
DOI URL |
[31] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)
DOI PMID |
[32] |
H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13,5188 (1976)
DOI URL |
[33] |
S. Paul, S. Ghosh, J. Appl. Phys. 110, 063523 (2011)
DOI URL |
[34] |
S. Özdemir Kart, I. Karaman, Status Solidi A 205,1026 (2008)
DOI URL |
[35] |
H.L. Yan, H.X. Liu, Y. Zhao, N. Jia, J. Bai, B. Yang, Z.B. Li, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, J. Mater. Sci. Technol. 74, 27 (2021)
DOI URL |
[36] | S.F. Pugh, Philos. Mag. 45, 823 (1954) |
[37] | A. T. Paxton, D. G. Pettifor, A. H. Cottrell, Electron theory in alloy design (The Institute of Materials, London UK, 1992),p. 158 |
[38] |
D.G. Pettifor, Mater. Sci. Technol.-Lond. 8, 345 (1992)
DOI URL |
[39] | D.G. Pettifor(ed.), Bonding and structure of molecules and solids (Clarendon, Oxford, 1995), |
[40] |
H. Niu, X.Q. Chen, P. Liu, W. Xing, X. Cheng, D. Li, Y. Li, Sci. Rep. 2, 718 (2012)
DOI URL |
[41] |
J. Xu, J.D. Wu, D.H. Lai, Z.H. Xie, P. Munroe, Mater. Sci. Technol.-Lond. 28, 1337 (2012)
DOI URL |
[1] | Xinzeng Liang, Jing Bai, Jianglong Gu, Ziqi Guan, Haile Yan, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Composition-Dependent of 6 M Martensite Structure and Magnetism in Cu-Alloyed Ni-Mn-In-Co by First-Principles Calculations [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 1034-1042. |
[2] | Li-Cheng Wu, Yan-Hui Li, Xing-Jie Jia, Ai-Na He, Wei Zhang. Effects of Ribbon Thickness on Structure and Soft Magnetic Properties of a High-Cu-Content FeBCuNb Nanocrystalline Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 235-242. |
[3] | Zhihui Li, Jinxing Yang, Jiemin Wang, Jixin Chen, Hao Zhang, Cong Cui, Xiaohui Wang, Zhonghai Ji, Yongheng Zhang, Meishuan Li. Raman Spectroscopy of Layered Compound YbB2C2 [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 1021-1027. |
[4] | Linxu Li, Xiufang Gong, Changshuai Wang, Yunsheng Wu, Hongyao Yu, Haijun Su, Lanzhang Zhou. Correlation Between Phase Stability and Tensile Properties of the Ni-Based Superalloy MAR-M247 [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 872-884. |
[5] | Hui Xiao, Yu Liu, Kai Wang, Zhipeng Wang, Te Hu, Touwen Fan, Li Ma, Pingying Tang. Effects of Mn Content on Mechanical Properties of FeCoCrNiMnx (0≤x≤0.3) High-Entropy Alloys: A First-Principles Study [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 455-464. |
[6] | Miao Chen, Wu Qin, Yixuan Hu, Yiren Wang, Yong Jiang, Xiaosong Zhou, Shuming Peng, Yibei Fu. Prediction on Phase Stabilities of the Zr-H System from the First-Principles [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 514-522. |
[7] | Li-Li Zhang, Jie Song, Sajjad Ur Rehman, Jia-Jie Li, Lei Wang, Mu-Nan Yang, Ren-Hui Liu, Qing-Zheng Jiang, Zhen-Chen Zhong. Uneven Evolution of Microstructure, Magnetic Properties and Coercivity Mechanism of Mo-Substituted Nd-Ce-Fe-B Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 590-596. |
[8] | Yixing Wan, Jinyong Mo, Xin Wang, Zhibin Zhang, Baolong Shen, Xiubing Liang. Mechanical Properties and Phase Stability of WTaMoNbTi Refractory High-Entropy Alloy at Elevated Temperatures [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1585-1590. |
[9] | Man Zhu, Chi Zhang, Kun Li, Yongqin Liu, Mao Zhang, Lijuan Yao, Zengyun Jian. A Novel CoFe2NiMn0.3AlCux High-Entropy Alloy with Excellent Magnetic Properties and Good Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1557-1564. |
[10] | Yongfei Juan, Jiao Zhang, Yongbing Dai, Qing Dong, Yanfeng Han. Designing Rules of Laser-Clad High-Entropy Alloy Coatings with Simple Solid Solution Phases [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1064-1076. |
[11] | Fushi Jiang, Chang Pang, Zhaoyang Zheng, Qing Wang, Jijun Zhao, Chuang Dong. First-Principles Calculations for Stable β-Ti-Mo Alloys Using Cluster-Plus-Glue-Atom Model [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 968-974. |
[12] | Liang Yang, Jun Li, Defang Tu, Joel C. J. Strickland, Qiaodan Hu, Hongbiao Dong, Jianguo Li. Reduced Annealing Time and Enhanced Magnetocaloric Effect of La(Fe, Al)13 Alloy by La-nonstoichiometry and Si-doping [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1535-1542. |
[13] | Yong Zhang, Zi-Ran Liu, Ding-Wang Yuan, Qin Shao, Jiang-Hua Chen, Cui-Lan Wu, Zao-Li Zhang. Elastic Properties and Stacking Fault Energies of Borides, Carbides and Nitrides from First-Principles Calculations [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1099-1110. |
[14] | Rui-Yang Liang, Ping Yang, Wei-Min Mao. Effect of Initial Goss Texture Sharpness on Texture Evolution and Magnetic Properties of Ultra-thin Grain-oriented Electrical Steel [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(9): 895-906. |
[15] | M. J. Miah, A. K. M. Akther Hossain. Magnetic, Dielectric and Complex Impedance Properties of xBa0.95Sr0.05TiO3-(1 - x)BiFe0.9Gd0.1O3Multiferroic Ceramics [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(6): 505-517. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||