Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (3): 484-498.DOI: 10.1007/s40195-023-01616-6
Previous Articles Next Articles
Jinchao Jiao1, Jin Zhang1,2(), Yong Lian1,2, Shengli Han3, Kaihong Zheng3, Fusheng Pan4
Received:
2023-05-24
Revised:
2023-08-03
Accepted:
2023-08-14
Online:
2024-03-10
Published:
2023-10-30
Contact:
Jin Zhang, Jinchao Jiao, Jin Zhang, Yong Lian, Shengli Han, Kaihong Zheng, Fusheng Pan. Influence of Micro/Nano-Ti Particles on the Corrosion Behavior of AZ31-Ti Composites[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(3): 484-498.
Add to citation manager EndNote|Ris|BibTeX
Fig. 3 Electrochemical tests of AZ31 alloy and composites: a OCP curves; b PDP curves; c Nyquist plots; d partial enlargement of the red dotted area in c; e Bode plots; and f equivalent circuit
Material | Ecorr (VSCE) | icorr (μA cm2) | Rs (Ω cm2) | CPEdl (× 10-6 S sn cm-2) | n | Rct (Ω cm2) | L (H cm2) | RL (Ω cm2) | Rp (Ω cm2) |
---|---|---|---|---|---|---|---|---|---|
AZ31 | - 1.531 | 37 | 5.3 | 8.99 | 0.965 | 602.3 | 110.9 | 336.6 | 215.9 |
AZ31-1.5%Ti | - 1.438 | 515 | 49.1 | 19.95 | 0.992 | 40.8 | 14.8 | 15.5 | 11.2 |
AZ31-5%Ti | - 1.427 | 1162 | 10.5 | 185.50 | 0.841 | 12.9 | 9.2 | 24.6 | 8.5 |
AZ31-10%Ti | - 1.513 | 147 | 10.6 | 23.61 | 0.955 | 190.4 | 49.3 | 105.4 | 67.8 |
Table 1 Corresponding fitted parameters of PDP curves and EIS spectra of matrix alloy and composites
Material | Ecorr (VSCE) | icorr (μA cm2) | Rs (Ω cm2) | CPEdl (× 10-6 S sn cm-2) | n | Rct (Ω cm2) | L (H cm2) | RL (Ω cm2) | Rp (Ω cm2) |
---|---|---|---|---|---|---|---|---|---|
AZ31 | - 1.531 | 37 | 5.3 | 8.99 | 0.965 | 602.3 | 110.9 | 336.6 | 215.9 |
AZ31-1.5%Ti | - 1.438 | 515 | 49.1 | 19.95 | 0.992 | 40.8 | 14.8 | 15.5 | 11.2 |
AZ31-5%Ti | - 1.427 | 1162 | 10.5 | 185.50 | 0.841 | 12.9 | 9.2 | 24.6 | 8.5 |
AZ31-10%Ti | - 1.513 | 147 | 10.6 | 23.61 | 0.955 | 190.4 | 49.3 | 105.4 | 67.8 |
Fig. 4 Immersion test result for the AZ31 alloy and composites: a mass loss and its kinetic fitting curve; b mass loss corrosion rate Pw; c rate and its kinetic fitting curve; and d hydrogen evolution corrosion rate PH
Material | Weight loss Pw (mm/y) | Hydrogen evolution PH (mm/y) |
---|---|---|
AZ31 | 27.55 ± 4.17 | 28.52 ± 0.21 |
AZ31-1.5%Ti | 105.65 ± 6.57 | 59.69 ± 0.58 |
AZ31-5%Ti | 283.67 ± 38.67 | 211.91 ± 0.53 |
AZ31-10%Ti | 99.35 ± 6.86 | 98.31 ± 0.59 |
Table 2 Average hydrogen evolution rate and weight loss test results for the matrix alloy and composites in 3.5 wt% NaCl solution for 168 h
Material | Weight loss Pw (mm/y) | Hydrogen evolution PH (mm/y) |
---|---|---|
AZ31 | 27.55 ± 4.17 | 28.52 ± 0.21 |
AZ31-1.5%Ti | 105.65 ± 6.57 | 59.69 ± 0.58 |
AZ31-5%Ti | 283.67 ± 38.67 | 211.91 ± 0.53 |
AZ31-10%Ti | 99.35 ± 6.86 | 98.31 ± 0.59 |
Fig. 5 Corrosion morphologies of AZ31 matrix alloy and composites after immersing in 3.5 wt% NaCl solution for 2 h: a AZ31, b AZ31-1.5%Ti, c AZ31-5%Ti, d AZ31-10%Ti
Fig. 6 Surface morphologies and EDS tests of AZ31 matrix alloy and composites immersing in 3.5 wt% NaCl solution for 2 h after removing corrosion products: a AZ31; b AZ31-1.5%Ti, c AZ31-5%Ti, d AZ31-10%Ti
Elements | Points | |||||
---|---|---|---|---|---|---|
A | B | C | D | E | F | |
Mg | 95.48 | 96.67 | 94.57 | 96.59 | 94.64 | 96.21 |
Al | 3.30 | 2.54 | 3.77 | 2.05 | 3.56 | 1.82 |
Zn | 1.2 | 0.79 | 1.27 | 0.51 | 1.52 | 0.55 |
Ti | - | - | 0.39 | 0.86 | 0.28 | 1.42 |
Table 3 EDS analysis of the marked points in Fig. 6 (wt%)
Elements | Points | |||||
---|---|---|---|---|---|---|
A | B | C | D | E | F | |
Mg | 95.48 | 96.67 | 94.57 | 96.59 | 94.64 | 96.21 |
Al | 3.30 | 2.54 | 3.77 | 2.05 | 3.56 | 1.82 |
Zn | 1.2 | 0.79 | 1.27 | 0.51 | 1.52 | 0.55 |
Ti | - | - | 0.39 | 0.86 | 0.28 | 1.42 |
Fig. 8 XPS spectra analysis of corrosion products on the surface of AZ31 matrix alloy and composites after immersing in the 3.5 wt% NaCl solution for 24 h: a1-a4 AZ31, b1-b4 AZ31-1.5%Ti, c1-c4 AZ31-5%Ti, d1-d4 AZ31-10%Ti
Fig. 10 a Potentiodynamic polarization curves of pure Ti and the AZ31 alloy used to determine the galvanic corrosion current density by applying mixed potential theory in a 3.5 wt% NaCl solution; b galvanic current density and potential between AZ31 alloy and pure Ti in 3.5 wt% NaCl solution
Composition (wt%) | State | Solution | Corrosion rate (mm/day) | |
---|---|---|---|---|
(25 °C) | (93 °C) | |||
AZ31-5%Ti (This study) | As-extruded | 3.5 wt% NaCl | 0.77 | - |
Mg-8.3Al-0.7Zn-0.2Mn-0.09Ca-0.15Ni [ | As-extruded | 3 wt% KCl | 0.8 | 13.34 |
Mg-17Al-5Zn-3%Si [ | As-cast | 3 wt% KCl | 0.46 | 5.39 |
Mg-6Al-1Zn-7%Fe [ | As-extruded | 3.5 wt% NaCl | 0.34 | - |
Mg-15Al-6Zn-2Cu-1.5Ni-5%HGMs [ | As-cast | 3 wt% KCl | 4.31 | 12.98 (85 °C) |
Mg-17Al-7Cu-3Zn [ | As-cast | 3 wt% KCl | 0.81 | - |
Mg-17Al-7Cu-3Zn-1Gd [ | As-cast | 3 wt% KCl | 0.21 | 1.51 |
Mg-10Gd-3Y-0.2Zr-0.8Ni [ | As-extruded | 3 wt% KCl | ~ 1 | ~ 3.35 |
Mg-3Al-1Zn-3%Cu [ | As-cast | 3.5 wt% NaCl | 0.45 | - |
Table 4 Comparisons of the corrosion performance of some dissoluble magnesium alloys in literature
Composition (wt%) | State | Solution | Corrosion rate (mm/day) | |
---|---|---|---|---|
(25 °C) | (93 °C) | |||
AZ31-5%Ti (This study) | As-extruded | 3.5 wt% NaCl | 0.77 | - |
Mg-8.3Al-0.7Zn-0.2Mn-0.09Ca-0.15Ni [ | As-extruded | 3 wt% KCl | 0.8 | 13.34 |
Mg-17Al-5Zn-3%Si [ | As-cast | 3 wt% KCl | 0.46 | 5.39 |
Mg-6Al-1Zn-7%Fe [ | As-extruded | 3.5 wt% NaCl | 0.34 | - |
Mg-15Al-6Zn-2Cu-1.5Ni-5%HGMs [ | As-cast | 3 wt% KCl | 4.31 | 12.98 (85 °C) |
Mg-17Al-7Cu-3Zn [ | As-cast | 3 wt% KCl | 0.81 | - |
Mg-17Al-7Cu-3Zn-1Gd [ | As-cast | 3 wt% KCl | 0.21 | 1.51 |
Mg-10Gd-3Y-0.2Zr-0.8Ni [ | As-extruded | 3 wt% KCl | ~ 1 | ~ 3.35 |
Mg-3Al-1Zn-3%Cu [ | As-cast | 3.5 wt% NaCl | 0.45 | - |
[1] | M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, L.G. Johansson, Prog. Mater. Sci. 89, 92 (2017) |
[2] | J.F. Song, J. She, D.L. Chen, F.S. Pan, J. Magnes. Alloys 8, 1 (2020) |
[3] | M. Gupta, W.L.E. Wong, Mater. Charact. 105, 30 (2015) |
[4] | H. Yang, X.H. Chen, G.S. Huang, J.F. Song, J. She, J. Tan, K.H. Zheng, Y.M. Jin, B. Jiang, F.S. Pan, J. Magnes. Alloys 10, 2311 (2022) |
[5] | J.L. Ye, J.B. Li, H. Luo, J. Tan, X.H. Chen, B. Feng, K.H. Zheng, F.S. Pan, Mater. Sci. Eng. A 833, 142526 (2022) |
[6] | J.L. Ye, X.H. Chen, H. Luo, J. Zhao, J.B. Li, J. Tan, H. Yang, B. Feng, K.H. Zheng, F.S. Pan, J. Magnes. Alloys 10, 2266 (2022) |
[7] | D.M. Pu, S.F. Wu, H. Yang, X.H. Chen, J.B. Li, X.W. Feng, K.H. Zheng, F.S. Pan, J. Mater. Res. Technol. 22, 1362 (2023) |
[8] | S. Tiwari, R. Balasubramaniam, M. Gupta, Corros. Sci. 49, 711 (2007) |
[9] | C.A. Nunez-Lopez, P. Skeldon, G.E. Thompson, P. Lyon, H. Karimzadeh, T.E. Wilks, Corros. Sci. 37, 689 (1995) |
[10] | M. Esmaily, N. Mortazavi, J.E. Svensson, M. Halvarsson, A.E.W. Jarfors, M. Wessén, R. Arrabal, L.G. Johansson, Mater. Chem. Phys. 180, 29 (2016) |
[11] | C.Y. Zhang, T. Zhang, Y.Q. Wang, F.F. Wei, Y.W. Shao, G.Z. Meng, F.H. Wang, K. Wu, J. Electrochem. Soc. 162, C 754 (2015) |
[12] | S. Ganguly, A.K. Mondal, S. Sarkar, A. Basu, S. Kumar, C. Blawert, Corros. Sci. 166, 108444 (2020) |
[13] | C.J. Shuai, B. Wang, Y.W. Yang, S.P. Peng, C.D. Gao, Compos. Part B Eng. 162, 611 (2019) |
[14] | Y. Say, O. Guler, B. Dikici, Mater. Sci. Eng. A 798, 139636 (2020) |
[15] | M.C. Turhan, Q.Q. Li, H. Jha, R.F. Singer, S. Virtanen, Electrochim. Acta 56, 7141 (2011) |
[16] | L. Yang, T. Wang, C. Liu, Y.Z. Ma, L. Wu, H.Y. Yan, X.Y. Zhao, W.S. Liu, J. Alloys Compd. 870, 159473 (2021) |
[17] | H. Yu, H.P. Zhou, Y. Sun, L.L. Ren, Z.P. Wan, L.X. Hu, Adv. Powder Technol. 29, 3241 (2018) |
[18] | A. Bahmani, S. Arthanari, K.S. Shin, J. Magnes. Alloys 8, 134 (2020) |
[19] | H.N. Li, M. Fan, K. Wang, G.P. Xu, H.Y. Jiang, Q.D. Wang, Y.G. Wang, Corros. Sci. 198, 110109 (2022) |
[20] | R. Walter, M.B. Kannan, Mater. Des. 32, 2350 (2011) |
[21] | F. Zucchi, V. Grassi, A. Frignani, C. Monticelli, G. Trabanelli, J. Appl. Electrochem. 36, 195 (2006) |
[22] | M. Gobara, M. Shamekh, R. Akid, J. Magnes. Alloys 3, 112 (2015) |
[23] | S. Jin, S. Amira, E. Ghali, Adv. Eng. Mater. 9, 75 (2007) |
[24] | S. Banerjee, S. Poria, G. Sutradhar, P. Sahoo, J. Magnes. Alloys 7, 681 (2019) |
[25] | A. Srinivasan, K.S. Shin, N. Rajendran, RSC Adv. 4, 27791 (2014) |
[26] | G. Baril, C. Blanc, N. Pébère, J. Electrochem. Soc.148, B 489 (2001) |
[27] | G. Baril, G. Galicia, C. Deslouis, N. Pébère, B. Tribollet, V. Vivier, J. Electrochem. Soc.154, C 108 (2006) |
[28] | S. Mathieu, C. Rapin, J. Hazan, P. Steinmetz, Corros. Sci. 44, 2737 (2002) |
[29] | T.T.N. Lan, N.T.P. Thoa, R. Nishimura, Y. Tsujino, M. Yokoi, Y. Maeda, Corros. Sci. 48, 179 (2006) |
[30] | F. Corvo, T. Perez, L.R. Dzib, Y. Martin, A. Castañeda, E. Gonzalez, J. Perez, Corros. Sci. 50, 220 (2008) |
[31] | Y.T. Ma, Y. Li, F.H. Wang, Corros. Sci. 52, 1796 (2010) |
[32] | L.T.H. Lien, P.T. San, H.L. Hong, Sci. Technol. Adv. Mater. 8, 552 (2007) |
[33] | Y.T. Ma, Y. Li, F.H. Wang, Corros. Sci. 51, 997 (2009) |
[34] | U.M. Chaudry, A. Farooq, K.B. Tayyab, A. Malik, M. Kamran, J.G. Kim, C. Li, K. Hamad, T.S. Jun, Corros. Sci. 199, 110205 (2022) |
[35] | C.A. Nunez-Lopez, H. Habazaki, P. Skeldon, G.E. Thompson, H. Karimzadeh, P. Lyon, T.E. Wilks, Corros. Sci. 38, 1721 (1996) |
[36] | A. Bakkar, V. Neubert, Corros. Sci. 49, 1110 (2007) |
[37] | A. Gnanavelbabu, K.T.S. Surendran, P. Loganathan, E. Vinothkumar, J. Alloys Compd. 856, 158173 (2021) |
[38] | M.F. Hurley, C.M. Efaw, P.H. Davis, J.R. Croteau, E. Graugnard, N. Birbilis, Corrosion 71, 160 (2014) |
[39] | L. Lacroix, L. Ressier, C. Blanc, G. Mankowski, J. Electrochem. Soc.155, C 131 (2008) |
[40] | B. Mingo, R. Arrabal, M. Mohedano, A. Pardo, E. Matykina, Surf. Coat. Technol. 309, 1023 (2017) |
[41] | G. Song, A. Atrens, M. Dargusch, Corros. Sci. 41, 249 (1998) |
[42] | S. Pawar, X. Zhou, G.E. Thompson, G. Scamans, Z. Fan, J. Electrochem. Soc.162, C 442 (2015) |
[43] | F.Y. Cao, G.L. Song, A. Atrens, Corros. Sci. 111, 835 (2016) |
[44] | H.G. Liu, F.Y. Cao, G.L. Song, D.J. Zheng, Z.M. Shi, M.S. Dargusch, A. Atrens, J. Mater. Sci. Technol. 35, 2003 (2019) |
[45] | H.Y. Choi, W.J. Kim, J. Alloy. Compd. 664, 25 (2016) |
[46] | H.Y. Choi, W.J. Kim, J. Alloy. Compd. 696, 736 (2017) |
[47] | Y.B. Zhao, L.Q. Shi, L.Y. Cui, C.L. Zhang, S.Q. Li, R.C. Zeng, F. Zhang, Z.L. Wang, Acta Metall. Sin. -Engl. Lett. 31, 180 (2018) |
[48] | J. Yang, J. Peng, M. Li, E.A. Nyberg, F.S. Pan, Acta Metall. Sin. -Engl. Lett. 30, 53 (2017) |
[49] | X.Z. Shi, Z.Y. Cui, J. Li, B.C. Hu, Y.Q. An, X. Wang, H.Z. Cui, Acta Metall. Sin. -Engl. Lett. (2023). https://doi.org/10.1007/s40195-023-01561-4 |
[50] | Z.L. Zhang, A. Kitada, K. Fukami, K. Murase, Acta Metall. Sin. -Engl. Lett. 35, 1996 (2022) |
[51] | L.P. Wu, C. Liu, J. Wei, J.H. Dong, L. Zhao, C. Li, W. Ke, Y.Q. Chen, C.G. Wang, Acta Metall. Sin. -Engl. Lett. (2023). https://doi.org/10.1007/s40195-023-01571-2 |
[52] | Y. Lv, C. Zhang, Y.P. Zhang, Q.S. Wang, X.X. Zhang, Z.H. Dong, Acta Metall. Sin. -Engl. Lett. 35, 961 (2022) |
[53] | J. Wang, H. Li, J. Wang, Y. Liu, J. Zhang, Metals 12, 583 (2022) |
[54] | M. Wang, D.H. Xiao, W.S. Liu, Vacuum 141, 144 (2017) |
[55] | C. Zhang, L. Wu, G. Huang, L. Chen, D. Xia, B. Jiang, A. Atrens, F. Pan, J. Mater. Sci. Technol. 35, 2086 (2019) |
[56] | L. Liu, S. Yu, Y. Niu, E. Liu, J. Alloys Compd. 835, 155198 (2020) |
[57] | Z. Geng, D. Xiao, L. Chen, J. Alloys Compd. 686, 145 (2016) |
[58] | J. Wang, T. Li, H.X. Li, Y.Z. Ma, K.N. Zhao, C.L. Yang, J.S. Zhang, J. Magnes. Alloys 9, 1632 (2021) |
[59] | M. Zhou, C. Liu, Y. Gao, S. Xu, S. Jiang, Chin. J. Nonferrous Met. 29, 18 (2019) |
[1] | Ying Shen, Xianfeng Shan, Iniobong P. Etim, Muhammad Ali Siddiqui, Yang Yang, Zewen Shi, Xuping Su, Junxiu Chen. Comparative Study of the Effects of Nano ZnO and CuO on the Biodegradation, Biocompatibility, and Antibacterial Properties of Micro-arc Oxidation Coating of Magnesium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 242-254. |
[2] | Gang Niu, Rui Yuan, R. D. K. Misra, Na Gong, Zhi-Hui Zhang, Hao-Xiu Chen, Hui-Bin Wu, Cheng-Jia Shang, Xin-Ping Mao. Effect of La on the Corrosion Behavior and Mechanism of 3Ni Weathering Steel in a Simulated Marine Atmospheric Environment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 308-324. |
[3] | Yu-Hang Chu, Liang-Yu Chen, Bo-Yuan Qin, Wenbin Gao, Fanmin Shang, Hong-Yu Yang, Lina Zhang, Peng Qin, Lai-Chang Zhang. Unveiling the Contribution of Lactic Acid to the Passivation Behavior of Ti-6Al-4V Fabricated by Laser Powder Bed Fusion in Hank’s Solution [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 102-118. |
[4] | Kai Hu, Lei Zhang, Yuanjie Zhang, Bo Song, Shifeng Wen, Qi Liu, Yusheng Shi. Electrochemical Corrosion Behavior and Mechanical Response of Selective Laser Melted Porous Metallic Biomaterials [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(8): 1235-1246. |
[5] | Xian Zhang, Li Gong, Yanpeng Feng, Zhihui Wang, Miao Yang, Lin Cheng, Jing Liu, Kaiming Wu. Effect of Retained Austenite on Corrosion Behavior of Ultrafine Bainitic Steel in Marine Environment [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 717-731. |
[6] | Xin Wei, Yupeng Sun, Junhua Dong, Nan Chen, Qiying Ren, Wei Ke. Effects of Aerobic and Anoxic Conditions on the Corrosion Behavior of NiCu Low Alloy Steel in the Simulated Groundwater Solutions [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 745-757. |
[7] | Xuejian Wang, Huaqiang Xiao, Keqiang Su, Bo Lin, Tongmin Wang, Enyu Guo. Effect of Extrusion Temperature on the Mechanical Properties and Corrosion Behavior of LZ91 Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(11): 1822-1832. |
[8] | Ziyue Xu, Huan Liu, Guangyang Hu, Xiaoru Zhuo, Kai Yan, Jia Ju, Wenkai Wang, Hang Teng, Jinghua Jiang, Jing Bai. Developing Zn-1.5Mg Alloy with Simultaneous Improved Strength, Ductility and Suitable Biodegradability by Rolling at Room Temperature [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(11): 1833-1843. |
[9] | Bao-Chang Liu, Shuai Zhang, Hong-Wei Xiong, Wen-Hao Dai, Yin-Long Ma. Effect of Al Content on the Corrosion Behavior of Extruded Dilute Mg-Al-Ca-Mn Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 77-90. |
[10] | Xiong Zhou, Qichi Le, Chenglu Hu, Ruizhen Guo, Tong Wang, Chunming Liu, Dandan Li, Xiaoqiang Li. Mechanical Properties and Corrosion Behavior of Multi-Microalloying Mg Alloys Prepared by Adding AlCoCrFeNi Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1301-1316. |
[11] | Xin Wei, Junhua Dong, Yupeng Sun, Nan Chen, Qiying Ren, Madhusudan Dhakal, Xiaofang Li, Wei Ke. Influence of Deteriorated Bentonite Sediments on the Corrosion Behavior of NiCu Low Alloy Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 1011-1022. |
[12] | Min Wang, Yuanjie Zhang, Bo Song, Qingsong Wei, Yusheng Shi. Wear Performance and Corrosion Behavior of Nano-SiCp-Reinforced AlSi7Mg Composite Prepared by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1213-1222. |
[13] | Shuai Zhang, Bao-Chang Liu, Mei-Xuan Li, Hui-Yuan Wang, Yin-Long Ma. Effect of Microstructures and Textures on Different Surfaces on Corrosion Behavior of an as-Extruded ATZ411 Magnesium Alloy Sheet [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1029-1041. |
[14] | Chuang-Shi Feng, Tian-Wei Lu, Tian-Li Wang, Man-Zhen Lin, Junhua Hou, Wenjun Lu, Wei-Bing Liao. A Novel High-Entropy Amorphous Thin Film with High Electrical Resistivity and Outstanding Corrosion Resistance [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1537-1545. |
[15] | He Huang, Huan Liu, Li-Sha Wang, Yu-Hua Li, Solomon-Oshioke Agbedor, Jing Bai, Feng Xue, Jing-Hua Jiang. A High-Strength and Biodegradable Zn-Mg Alloy with Refined Ternary Eutectic Structure Processed by ECAP [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1191-1200. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||