Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (4): 597-613.DOI: 10.1007/s40195-025-01822-4
Previous Articles Next Articles
Zhe Yan1, Qi An1, Lichen Bai1, Ruifeng Zhang2,3, Mingyu Gong4, Shijian Zheng1()
Received:
2024-10-11
Revised:
2024-11-22
Accepted:
2024-12-15
Online:
2025-04-10
Published:
2025-02-23
Contact:
Shijian Zheng, Zhe Yan, Qi An, Lichen Bai, Ruifeng Zhang, Mingyu Gong, Shijian Zheng. Complexions-Dominated Plastic Transmission and Mechanical Response in Cu-Based Nanolayered Composites[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 597-613.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 Side view of the fcc{111}//{110}bcc and fcc{111}//{111}fcc interface models after the introduction of crystalline complexions. Interface models are Cu/Nb interface with a KS and b NW orientation; Cu/Ag interface with c cube-on-cube and d hetero-twin orientation; Cu/Ni interface with e cube-on-cube, f hetero-twin orientation. The red and black lines represent two sets of compact planes
Fig. 3 Relaxed atomic structure and misfit dislocation networks of the a KS Cu/Nb interface, b NW Cu/Nb interface, c cube-on-cube Cu/Ag interface, d hetero-twin Cu/Ag interface, e cube-on-cube Cu/Ni interface, f hetero-twin Cu/Ni interface. The atoms are colored according to excess potential energy. Solid lines of different colors represent dislocation lines with different Burgers vectors
Fig. 4 a Side view of the interface models after the introduction of amorphous complexions. b In-plane atomic structure of Cu3 to Am2 layers at the C/A interface. The yellow and blue atoms indicate Cu and Nb atoms. c RDF analysis for the Cu3 to Am2 layers. d Disregistry vectors of the Cu1 layer at the relaxed C/A interface and the colors are scaled by the vector magnitude
Fig. 5 Open Thompson tetrahedron showing all possible slip systems in the a fcc and b twin fcc crystalline, in which the three slip planes are denoted by ABD (ABD′), ACD (ACD′) and BCD (BCD′), and the ABC plane corresponds to the interface. The open polyhedron shows all possible slip systems in the bcc crystalline with c KS, d NW orientation, in which the five slip planes are indicated by ${\text{A}}^{\prime } {\text{B}}^{\prime } {\text{F}}^{\prime }$, ${\text{A}}^{\prime } {\text{C}}^{\prime } {\text{G}}^{\prime }$, ${\text{A}}^{\prime } {\text{C}}^{\prime } {\text{G}}$, ${\text{B}}^{\prime } {\text{C}}^{\prime } {\text{E}}^{\prime }$ and ${\text{B}}^{\prime } {\text{C}}^{\prime } {\text{E}}$, and the plane ${\text{A}}^{\prime } {\text{B}}^{\prime } {\text{C}}^{\prime }$ plane corresponds to the interface
Fig. 6 Nucleation characteristics of Shockley partial dislocations from the a KS Cu/Nb interface, b NW Cu/Nb interface, c cube-on-cube Cu/Ag interface, d hetero-twin Cu/Ag interface, e cube-on-cube Cu/Ni interface, f hetero-twin Cu/Ni interface under y compression loading. The yellow and green atoms indicate Cu and Nb atoms in a and b. The red atoms indicate local hcp structure; the blue atoms indicate local hcp structure; the white atoms indicate unknown structure
Slip systems in fcc | Trace | Schmid factor |
---|---|---|
AB | − 0.314 | |
0.157 | ||
0.157 | ||
AC | − 0.314 | |
0.157 | ||
0.157 | ||
BC | − 0.314 | |
0.157 | ||
0.157 |
Table 1 Schmid factors for the nine partial dislocations possible slip systems in fcc crystalline under y compression loading
Slip systems in fcc | Trace | Schmid factor |
---|---|---|
AB | − 0.314 | |
0.157 | ||
0.157 | ||
AC | − 0.314 | |
0.157 | ||
0.157 | ||
BC | − 0.314 | |
0.157 | ||
0.157 |
Fig. 7 Stress-strain and dislocation density curves for a Cube-Ag and c Twin-Ag complexions model. The configuration of the dislocation evolution for b Cube-Ag and d Twin-Ag complexions model at different strains (i)-(iv) marked by arrows in a and c. Cyan atoms indicate Ag atoms in complexions. Red atoms indicate local hcp structure, and white atoms indicate unknown structure in matrix Cu. Perfect fcc and bcc atoms are not shown. The colored solid lines within the model indicate the dislocations with different Burgers vectors
Fig. 8 a Stress-strain and dislocation density curves for Cu50Zr50 amorphous complexions model. b Configuration of the dislocation evolution for Cu50Zr50 amorphous complexions model at different strains (i)-(iv) marked by arrows in a. Blue atoms indicate Zr atoms, and yellow atoms indicate Cu atoms in complexions. Red atoms indicate local hcp structure and white atoms indicate unknown structure in matrix Cu. Perfect fcc and bcc atoms are not shown. The colored solid lines within the model indicate the dislocations with different Burgers vectors
Elastic modulus (GPa) | Yield stress (GPa) | Flow stress (GPa) | |
---|---|---|---|
KS-Nb | 202.77 | 14.01 | 3.84 |
NW-Nb | 204.06 | 15.22 | 4.13 |
Cube-Ag | 191.04 | 14.53 | 3.37 |
Twin-Ag | 191.05 | 13.94 | 3.82 |
Cube-Ni | 212.06 | 12.46 | 2.33 |
Twin-Ni | 212.10 | 12.67 | 3.21 |
Cu33Zr67 | 182.98 | 12.98 | 6.05 |
Cu50Zr50 | 191.13 | 12.81 | 5.35 |
Cu67Zr33 | 201.04 | 13.74 | 4.84 |
Table 2 Elastic modulus, yield stress and flow stress for all multilayer models with different complexions
Elastic modulus (GPa) | Yield stress (GPa) | Flow stress (GPa) | |
---|---|---|---|
KS-Nb | 202.77 | 14.01 | 3.84 |
NW-Nb | 204.06 | 15.22 | 4.13 |
Cube-Ag | 191.04 | 14.53 | 3.37 |
Twin-Ag | 191.05 | 13.94 | 3.82 |
Cube-Ni | 212.06 | 12.46 | 2.33 |
Twin-Ni | 212.10 | 12.67 | 3.21 |
Cu33Zr67 | 182.98 | 12.98 | 6.05 |
Cu50Zr50 | 191.13 | 12.81 | 5.35 |
Cu67Zr33 | 201.04 | 13.74 | 4.84 |
Fig. 9 Relative orientation of the gliding planes for different complexions models to indicate possible transmission pathway. Schematic diagrams of fcc/fcc system with a cube-on-cube and b hetero-twin orientation, and the fcc/bcc system with c KS, d NW orientation
Fig. 10 Top view of the atomic structure and the traces of the gliding planes at the Cu /Nb interface with a KS, b NW orientation. The red ${\text{A}}^{\prime } {\text{B}}^{\prime } {\text{C}}^{\prime }$ is for the Nb side and the blue ABC is for the Cu side. The atoms are colored according to excess potential energy
Incoming slip systems in Ag (Cu) | Trace | Outgoing slip systems in Cu (Ni) | Trace | λ | ||||
---|---|---|---|---|---|---|---|---|
AB | AB | 0° | 0° | 0° | 1 | 1 | ||
0° | 60° | 0° | 0.5 | 0 | ||||
0° | 60° | 0° | 0.5 | 0 | ||||
0° | 60° | 0° | 0.5 | 0 | ||||
0° | 0° | 0° | 1 | 1 | ||||
0° | 60° | 0° | 0.5 | 0 | ||||
AC | AC | 0° | 0° | 0° | 1 | 1 | ||
0° | 60° | 0° | 0.5 | 0 | ||||
0° | 60° | 0° | 0.5 | 0 | ||||
0° | 60° | 0° | 0.5 | 0 | ||||
0° | 0° | 0° | 1 | 1 | ||||
0° | 60° | 0° | 0.5 | 0 | ||||
BC | BC | 0° | 0° | 0° | 1 | 1 | ||
0° | 60° | 0° | 0.5 | 0 | ||||
0° | 60° | 0° | 0.5 | 0 | ||||
0° | 60° | 0° | 0.5 | 0 | ||||
0° | 0° | 0° | 1 | 1 | ||||
0° | 60° | 0° | 0.5 | 0 |
Table 3 $\delta$ (The angle between the slip plane), $\kappa$ (the angle between the slip direction), $\omega$ (the angle between the traces), $m$ factor (consider slip plane and slip direction) and $\lambda$ factor (consider slip direction and trace) of the slip system pairs between fcc/fcc model with cube-on-cube orientation relationship
Incoming slip systems in Ag (Cu) | Trace | Outgoing slip systems in Cu (Ni) | Trace | λ | ||||
---|---|---|---|---|---|---|---|---|
AB | AB | 0° | 0° | 0° | 1 | 1 | ||
0° | 60° | 0° | 0.5 | 0 | ||||
0° | 60° | 0° | 0.5 | 0 | ||||
0° | 60° | 0° | 0.5 | 0 | ||||
0° | 0° | 0° | 1 | 1 | ||||
0° | 60° | 0° | 0.5 | 0 | ||||
AC | AC | 0° | 0° | 0° | 1 | 1 | ||
0° | 60° | 0° | 0.5 | 0 | ||||
0° | 60° | 0° | 0.5 | 0 | ||||
0° | 60° | 0° | 0.5 | 0 | ||||
0° | 0° | 0° | 1 | 1 | ||||
0° | 60° | 0° | 0.5 | 0 | ||||
BC | BC | 0° | 0° | 0° | 1 | 1 | ||
0° | 60° | 0° | 0.5 | 0 | ||||
0° | 60° | 0° | 0.5 | 0 | ||||
0° | 60° | 0° | 0.5 | 0 | ||||
0° | 0° | 0° | 1 | 1 | ||||
0° | 60° | 0° | 0.5 | 0 |
Incoming slip systems in Cu | Trace | Outgoing slip systems in Nb | Trace | λ | ||||
---|---|---|---|---|---|---|---|---|
AB | A′B′ | 10.5° | 79.9° | 0° | 0.17 | − 0.50 | ||
10.5° | 25.7° | 0° | 0.89 | 0.78 | ||||
49.5° | 53.5° | 0° | 0.39 | 0.17 | ||||
49.5° | 26.5° | 0° | 0.58 | 0.77 | ||||
10.5° | 41.2° | 0° | 0.74 | 0.47 | ||||
10.5° | 84.3° | 0° | 0.10 | − 0.59 | ||||
49.5° | 89.0° | 0° | 0.01 | − 0.69 | ||||
49.5° | 58.7° | 0° | 0.34 | 0.03 | ||||
AC | A′C′ | 14.2° | 74.8° | 10.5° | 0.23 | − 0.17 | ||
14.2° | 20.1° | 10.5° | 0.91 | 0.39 | ||||
50.5° | 59.6° | 10.5° | 0.32 | 0.01 | ||||
50.5° | 35.6° | 10.5° | 0.32 | 0.27 | ||||
14.2° | 47.0° | 10.5° | 0.66 | 0.15 | ||||
14.2° | 80.0° | 10.5° | 0.17 | − 0.23 | ||||
50.5° | 84.9° | 10.5° | 0.06 | − 0.27 | ||||
50.5° | 60.9° | 10.5° | 0.31 | − 0.01 | ||||
BC | B′C′ | 20.1° | 26.9° | 5.3° | 0.84 | 0.65 | ||
20.1° | 83.0° | 5.3° | 0.11 | − 0.48 | ||||
20.1° | 84.0° | 5.3° | 0.10 | − 0.50 | ||||
20.1° | 29.1° | 5.3° | 0.82 | 0.62 |
Table 4 $\delta$ (The angle between the slip plane), $\kappa$ (the angle between the slip direction), $\omega$ (the angle between the traces), $m$ factor (consider slip plane and slip direction) and $\lambda$ factor (consider slip direction and trace) of the slip system pairs between fcc/bcc model with KS orientation relationship
Incoming slip systems in Cu | Trace | Outgoing slip systems in Nb | Trace | λ | ||||
---|---|---|---|---|---|---|---|---|
AB | A′B′ | 10.5° | 79.9° | 0° | 0.17 | − 0.50 | ||
10.5° | 25.7° | 0° | 0.89 | 0.78 | ||||
49.5° | 53.5° | 0° | 0.39 | 0.17 | ||||
49.5° | 26.5° | 0° | 0.58 | 0.77 | ||||
10.5° | 41.2° | 0° | 0.74 | 0.47 | ||||
10.5° | 84.3° | 0° | 0.10 | − 0.59 | ||||
49.5° | 89.0° | 0° | 0.01 | − 0.69 | ||||
49.5° | 58.7° | 0° | 0.34 | 0.03 | ||||
AC | A′C′ | 14.2° | 74.8° | 10.5° | 0.23 | − 0.17 | ||
14.2° | 20.1° | 10.5° | 0.91 | 0.39 | ||||
50.5° | 59.6° | 10.5° | 0.32 | 0.01 | ||||
50.5° | 35.6° | 10.5° | 0.32 | 0.27 | ||||
14.2° | 47.0° | 10.5° | 0.66 | 0.15 | ||||
14.2° | 80.0° | 10.5° | 0.17 | − 0.23 | ||||
50.5° | 84.9° | 10.5° | 0.06 | − 0.27 | ||||
50.5° | 60.9° | 10.5° | 0.31 | − 0.01 | ||||
BC | B′C′ | 20.1° | 26.9° | 5.3° | 0.84 | 0.65 | ||
20.1° | 83.0° | 5.3° | 0.11 | − 0.48 | ||||
20.1° | 84.0° | 5.3° | 0.10 | − 0.50 | ||||
20.1° | 29.1° | 5.3° | 0.82 | 0.62 |
Fig. 12 Snapshots of the multilayer with amorphous complexions at the strain of a 6.5%, b 7.0%, c 7.5%. Atom colors in the amorphous layer represent the magnitude of the von Mises shear strain. Crystalline Cu layers are colored according to the CNA method, green atoms indicate fcc structure, pink atoms indicate local hcp structure, and white atoms indicate unknown structure
Fig. 13 a Dislocation density and STZs atomic percentage curves of Cu50Zr50 amorphous complexions model during loading. b STZs atomic percentage curves for amorphous complexions models with different compositions during loading
[1] | S. Zheng, I.J. Beyerlein, J.S. Carpenter, K. Kang, J. Wang, W. Han, N.A. Mara, Nat. Commun. 4, 1 (2013) |
[2] | L.F. Zeng, R. Gao, Q.F. Fang, X.P. Wang, Z.M. Xie, S. Miao, T. Hao, T. Zhang, Acta Mater. 110, 341 (2016) |
[3] | M. Nasim, Y. Li, M. Wen, C. Wen, J. Mater. Sci. Technol. 50, 215 (2020) |
[4] | W.Z. Han, E.K. Cerreta, N.A. Mara, I.J. Beyerlein, J.S. Carpenter, S.J. Zheng, C.P. Trujillo, P.O. Dickerson, A. Misra, Acta Mater. 63, 150 (2014) |
[5] | R.F. Zhang, T.C. Germann, X.Y. Liu, J. Wang, I.J. Beyerlein, Acta Mater. 79, 74 (2014) |
[6] | I.J. Beyerlein, A. Caro, M.J. Demkowicz, N.A. Mara, A. Misra, B.P. Uberuaga, Mater. Today 16, 443 (2013) |
[7] | K.Y. Yu, C. Sun, Y. Chen, Y. Liu, H. Wang, M.A. Kirk, M. Li, X. Zhang, Philos. Mag. 93, 3547 (2013) |
[8] | M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater. Sci. 51, 427 (2005) |
[9] | T.H. Fang, W.L. Li, N.R. Tao, K. Lu, Science 331, 1587 (2011) |
[10] | Z. Shang, T. Sun, J. Ding, N.A. Richter, N.M. Heckman, B.C. White, B.L. Boyce, K. Hattar, H. Wang, X. Zhang, Sci. Adv. eadd9780 (2023) |
[11] | T.A. Wynn, D. Bhattacharyya, D.L. Hammon, A. Misra, N.A. Mara, Mater. Sci. Eng. A 564, 213 (2013) |
[12] | J. Li, W. Lu, S. Zhang, D. Raabe, Sci. Rep. 7, 11371 (2017) |
[13] | R.F. Zhang, I.J. Beyerlein, S.J. Zheng, S.H. Zhang, A. Stukowski, T.C. Germann, Acta Mater. 113, 194 (2016) |
[14] |
X.F. Kong, I.J. Beyerlein, Z.R. Liu, B.N. Yao, D. Legut, T.C. Germann, R.F. Zhang, Acta Mater. 166, 231 (2019)
DOI |
[15] | Y. Zhang, Z.R. Liu, B.N. Yao, D. Legut, R.F. Zhang, Int. J. Plast. 160, 103498 (2023) |
[16] | V. Borovikov, M.I. Mendelev, A.H. King, Int. J. Plast. 90, 146 (2017) |
[17] | C.J. Wang, B.N. Yao, Z.R. Liu, X.F. Kong, D. Legut, R.F. Zhang, Y. Deng, Int. J. Plast. 131, 102725 (2020) |
[18] | A. Gola, P. Gumbsch, L. Pastewka, Acta Mater. 150, 236 (2018) |
[19] | Z. Yan, Z. Liu, B. Yao, Q. An, R. Zhang, S. Zheng, Scr. Mater. 231, 115470 (2023) |
[20] | V. Turlo, T.J. Rupert, Acta Mater. 151, 100 (2018) |
[21] | J. Ding, D. Neffati, Q. Li, R. Su, J. Li, S. Xue, Z. Shang, Y. Zhang, H. Wang, Y. Kulkarni, X. Zhang, Nanoscale 11, 23449 (2019) |
[22] | A. Bellou, C.T. Overman, H.M. Zbib, D.F. Bahr, A. Misra, Scr. Mater. 64, 641 (2011) |
[23] |
Z.H. Cao, W. Sun, Y.J. Ma, Q. Li, Z. Fan, Y.P. Cai, Z.J. Zhang, H. Wang, X. Zhang, X.K. Meng, Acta Mater. 195, 240 (2020)
DOI |
[24] | Y. Wang, J. Li, A.V. Hamza, T.W. Barbee, Proc. Natl. Acad. Sci. 104, 11155 (2007) |
[25] |
Y. Chen, N. Li, R.G. Hoagland, X.Y. Liu, J.K. Baldwin, I.J. Beyerlein, J.Y. Cheng, N.A. Mara, Acta Mater. 199, 593 (2020)
DOI |
[26] | S. Jiang, L. Bai, Q. An, Z. Yan, W. Li, K. Ming, S. Zheng, Acta Metall. Sin.-Engl. Lett. 35, 1759 (2022) |
[27] | W. Liu, Y. Liu, H. Sui, L. Chen, L. Yu, X. Yi, H. Duan, J. Mech. Phys. Solids 145, 104158 (2020) |
[28] | D.E. Spearot, M.D. Sangid, Curr. Opin. Solid State Mater. Sci. 18, 188 (2014) |
[29] | E. Bayerschen, A.T. McBride, B.D. Reddy, T. Böhlke, J. Mater. Sci. 51, 2243 (2016) |
[30] | Z. Sun, F. Dai, W. Zhang, Comput. Mater. Sci. 188, 110141 (2021) |
[31] | M. Wei, Z. Cao, X. Meng, Acta Metall. Sin.-Engl. Lett. 29, 199 (2016) |
[32] | S. Weng, H. Ning, N. Hu, C. Yan, T. Fu, X. Peng, S. Fu, J. Zhang, C. Xu, D. Sun, Y. Liu, L. Wu, Mater. Des. 111, 1 (2016) |
[33] | I.J. Beyerlein, N.A. Mara, J. Wang, J.S. Carpenter, S.J. Zheng, W.Z. Han, R.F. Zhang, K. Kang, T. Nizolek, T.M. Pollock, JOM 64, 1192 (2012) |
[34] | J. McKeown, A. Misra, H. Kung, R.G. Hoagland, M. Nastasi, Scr. Mater. 46, 593 (2002) |
[35] |
J.Y. Zhang, G. Liu, J. Sun, Sci. Rep. 3, 2324 (2013)
DOI PMID |
[36] | Y. Cui, Y. Shibutani, S. Li, P. Huang, F. Wang, J. Alloy. Compd. 693, 285 (2017) |
[37] | X. Zhou, C. Chen, Comput. Mater. Sci. 101, 194 (2015) |
[38] | C. Zhong, H. Zhang, Q. Cao, X. Wang, D. Zhang, J. Hu, P. Liaw, J. Jiang, J. Alloy. Compd. 678, 410 (2016) |
[39] | Y. Cui, O.T. Abad, F. Wang, P. Huang, T.J. Lu, K.W. Xu, J. Wang, Sci. Rep. 6, 23306 (2016) |
[40] | Z. Meng, K. Wang, T. Ali, D. Li, C. Bai, D. Xu, S.J. Li, A. Feng, G. Cao, J. Yao, Q. Fan, H. Wang, R. Yang, Acta Metall. Sin.-Engl. Lett. 37, 1590 (2024) |
[41] | S.J. Zheng, J. Wang, J.S. Carpenter, W.M. Mook, P.O. Dickerson, N.A. Mara, I.J. Beyerlein, Acta Mater. 79, 282 (2014) |
[42] | N. Li, J. Wang, A. Misra, J.Y. Huang, Microsc. Microanal. 18, 1155 (2012) |
[43] | J. Wang, R.G. Hoagland, X.Y. Liu, A. Misra, Acta Mater. 59, 3164 (2011) |
[44] | L. Grippo, S. Lucidi, Math. Program. 78, 375 (1997) |
[45] | S. Plimpton, J. Comput. Phys. 117, 1 (1995) |
[46] | Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress, Phys. Rev. B 63, 224106 (2001) |
[47] | M.J. Demkowicz, R.G. Hoagland, Int. J. Appl. Mech. 01, 421 (2009) |
[48] | P.L. Williams, Y. Mishin, J.C. Hamilton, Modell. Simul. Mater. Sci. Eng. 14, 817 (2006) |
[49] |
F. Fischer, G. Schmitz, S.M. Eich, Acta Mater. 176, 220 (2019)
DOI |
[50] | M.I. Mendelev, D.J. Sordelet, M.J. Kramer, J. Appl. Phys. 102, 043501 (2007) |
[51] | B.N. Yao, R.F. Zhang, Comput. Phys. Commun. 247, 106857 (2019) |
[52] | A. Stukowski, Modell. Simul. Mater. Sci. Eng. 20, 045021 (2012) |
[53] | F. Shimizu, S. Ogata, J. Li, Mater. Trans. 48, 2923 (2007) |
[54] | A. Stukowski, V.V. Bulatov, A. Arsenlis, Modell. Simul. Mater. Sci. Eng. 20, 085007 (2012) |
[55] | A. Stukowski, Modell. Simul. Mater. Sci. Eng. 18, 015012 (2009) |
[56] | K. Wu, J. Zhang, G. Liu, J. Li, G. Zhang, J. Sun, Acta Metall. Sin.-Engl. Lett. 29, 181 (2016) |
[57] | Y. Wang, Z. Hou, J. Zhang, X. Liang, G. Liu, G. Zhang, J. Sun, Acta Metall. Sin.-Engl. Lett. 29, 156 (2016) |
[58] | J. Wang, R. Zhang, C. Zhou, I.J. Beyerlein, A. Misra, J. Mater. Res. 28, 1646 (2013) |
[59] | J. Wang, R.F. Zhang, C.Z. Zhou, I.J. Beyerlein, A. Misra, Int. J. Plast. 53, 40 (2014) |
[60] | I.J. Beyerlein, J. Wang, R. Zhang, Acta Mater. 61, 7488 (2013) |
[61] | X.Y. Chen, X.F. Kong, A. Misra, D. Legut, B.N. Yao, T.C. Germann, R.F. Zhang, Acta Mater. 143, 107 (2018) |
[62] |
Y.Y. Xiao, X.F. Kong, B.N. Yao, D. Legut, T.C. Germann, R.F. Zhang, Acta Mater. 162, 255 (2019)
DOI |
[63] | R.F. Zhang, J. Wang, I.J. Beyerlein, A. Misra, T.C. Germann, Acta Mater. 60, 2855 (2012) |
[64] | R.D. Wyman, D.T. Fullwood, R.H. Wagoner, E.R. Homer, Acta Mater. 124, 588 (2017) |
[65] | R.F. Zhang, J. Wang, I.J. Beyerlein, T.C. Germann, Scr. Mater. 65, 1022 (2011) |
[66] | Y. Zheng, Q. Li, J. Zhang, H. Ye, H. Zhang, L. Shen, Nanotechnology 28, 415705 (2017) |
[67] | E. Werner, W. Prantl, Acta Metall. Mater. 38, 533 (1990) |
[68] | J. Wang, Q. Zhou, S. Shao, A. Misra, Mater. Res. Lett. 5, 1 (2016) |
[69] | S. Dong, T. Chen, S. Huang, N. Li, C. Zhou, Scr. Mater. 187, 323 (2020) |
[1] | Yang Feng, Shuai Wang, Yang Zhao, Li-Qing Chen. Achieving High-Temperature Oxidation and Corrosion Resistance in Fe-Mn-Cr-Al-Cu-C TWIP Steel via Annealing Control [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 642-656. |
[2] | Ye Liu, Shuran Chu, Hui Guo, Mengyao Kong, Chenxi Liu, Jingwen Zhang, Ran Ding, Yongchang Liu. Enhancing the Strength of Medium Mn Steel by Flash Treatment [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 139-150. |
[3] | Rashad A. Al-Hammadi, Rui Zhang, Chuanyong Cui, Zijian Zhou, Yizhou Zhou. Revealing the Void Formation Mechanism during Superplastic Deformation of a Fine-Grained Ni-Co-Base Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 915-920. |
[4] | Ke Qiao, Kuaishe Wang, Jia Wang, Zhengyang Hao, Kairui Xue, Jun Cai, Fengming Qiang, Wen Wang. Microstructure Evolution and Recrystallized Behavior of Friction Stir Welding Twin-Induced Plasticity Steel [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(11): 1947-1960. |
[5] | Peng-Da Huo, Feng Li, Wen-Tao Niu, Rong-He Gao, An-Xin Zhang. Microstructure Characteristics and Corrugation Interface Behavior of Al/Mg/Al Composite Plate Rolled Under Large Strain [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 827-838. |
[6] | Xueru Fan, Lei Xie, Qiang Li, Chuntao Chang, Hongxiang Li. Improved Plasticity of Fe25Co25Ni25(Si0.3B0.7)25 High Entropy Bulk Metallic Glass through the Addition of Cu [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(3): 417-425. |
[7] | Sihan Chen, Tian Liang, Guangcai Ma, Chengwu Zheng, Deli Chen, Yingche Ma, Kui Liu. High-Temperature Plasticity Enhanced by Multiple Secondary Phases in a High-Si Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1519-1530. |
[8] | Xicai Luo, Haolin Liu, Limei Kang, Jielin Lin, Datong Zhang, Dongyang Li, Daolun Chen. Achieving Superior Superplasticity in a Mg-6Al-Zn Plate via Multi-pass Submerged Friction Stir Processing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 757-762. |
[9] | Shaoheng Sun, Yun Zhang, Zhiyong Xue, Jiankun Lin, Xiaohua Chen. Deformation Mechanism in Fe61Mn18Si11Cr10 Medium Entropy Alloy Under Different Strain Rates [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1109-1119. |
[10] | Chunni Jia, Gang Shen, Wenxiong Chen, Baojia Hu, Chengwu Zheng, Dianzhong Li. Mesoscopic Analysis of Deformation Heterogeneity and Recrystallization Microstructures of a Dual-Phase Steel Using a Coupled Simulation Approach [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 777-788. |
[11] | Y. R. Ma, H. J. Yang, D. D. Ben, X. H. Shao, Y. Z. Tian, Q. Wang, Z. F. Zhang. Anisotropic Electroplastic Effects on the Mechanical Properties of a Nano-Lamellar Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 534-542. |
[12] | Susana Montecinos, Sebastián Tognana, Walter Salgueiro. Indentation Size Effect in β CuAlBe and Cu-2Be Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(12): 1669-1678. |
[13] | Xiaojuan Fan, Ruitao Qu, Zhefeng Zhang. Relation Between Strength and Hardness of High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1461-1482. |
[14] | Hai-Feng Zhang, Hai-Le Yan, Feng Fang, Nan Jia. Orientation-Dependent Mechanical Responses and Plastic Deformation Mechanisms of FeMnCoCrNi High-entropy Alloy: A Molecular Dynamics Study [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1511-1526. |
[15] | Wen Wang, Peng Han, Pai Peng, Ting Zhang, Qiang Liu, Sheng-Nan Yuan, Li-Ying Huang, Hai-Liang Yu, Ke Qiao, Kuai-She Wang. Friction Stir Processing of Magnesium Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(1): 43-57. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||