Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (1): 139-150.DOI: 10.1007/s40195-024-01765-2
Previous Articles Next Articles
Ye Liu1, Shuran Chu1, Hui Guo2, Mengyao Kong1, Chenxi Liu1, Jingwen Zhang1(), Ran Ding1(
), Yongchang Liu1
Received:
2024-04-30
Revised:
2024-05-28
Accepted:
2024-06-11
Online:
2025-01-10
Published:
2024-09-23
Contact:
Jingwen Zhang, jwz@tju.edu.cn; Ran Ding, ran_ding@tju.edu.cn
Ye Liu, Shuran Chu, Hui Guo, Mengyao Kong, Chenxi Liu, Jingwen Zhang, Ran Ding, Yongchang Liu. Enhancing the Strength of Medium Mn Steel by Flash Treatment[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 139-150.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 Microstructures of samples held at different ART temperatures: a 630 °C; b 650 °C; c 670 °C; d 690 °C. e Volume fraction of retained austenite and its C concentration in the ART samples as measured by XRD; f RA distribution of sample annealed at 670 °C. α: ferrite; γ: austenite; θ: cementite; α′: martensite
Fig. 4 Microstructures of different ART samples after flash treatment: a 630 °C ART + flash; b 650 °C ART + flash; c 670 °C ART + flash; d 690 °C ART + flash; and e the volume fraction of retained austenite and its C concentration in the ART + flash samples as measured by XRD
Fig. 6 a and d Engineering stress-strain curves of different ART and ART + flash samples; b and e comparison of uniform elongation, yield strength and tensile strength; c and f comparison of work hardening rate
Fig. 8 a Inverse pole figure (IPF) figure of BCC phase; b Schmidt factor distribution diagram of {111} < 110 > slip system of BCC phase; c phase distribution; and d-l strain distribution under different stresses of 670 °C ART sample. Note: the yield point was determined from a preliminary experiment with an extensometer; the local strain is calculated by directly dividing the displacement between the grips by the gauge length which is significantly deviated from the engineering strain in Fig. 6
Fig. 9 a IPF figure of BCC phase; b Schmidt factor distribution diagram of {111} < 110 > slip system of BCC phase; c phase distribution; and d-l strain distribution under different stresses of 670 °C ART + flash treatment sample. The yield point and the local strain are accessed in a similar way as shown in Fig. 8
Fig. 10 Dislocation distribution of 670 °C ART sample a before and b after deformation; and dislocation distribution of 670 °C ART + flash treated sample c before and d after deformation
[1] | X. Li, R.B. Song, N.P. Zhou, J.J. Li, Scr. Mater. 154, 30 (2018) |
[2] | D.W. Suh, S.J. Kim, Scr. Mater. 126, 63 (2017) |
[3] | D. Lee, J.K. Kim, S. Lee, K. Lee, B.C. De Cooman, Mater. Sci. Eng. A 706, 1 (2017) |
[4] | J. Hu, L.X. Du, G.S. Sun, H. Xie, R.D.K. Misra, Scr. Mater. 104, 87 (2015) |
[5] | M. Soleimani, A. Kalhor, H. Mirzadeh, Mater. Sci. Eng. A 795, 140023 (2020) |
[6] | B. Sun, F. Fazeli, C. Scott, B. Guo, C. Aranas, X. Chu, M. Jahazi, S. Yue, Mater. Sci. Eng. A 729, 496 (2018) |
[7] | R.S. Varanasi, M. Lipińska-Chwałek, J. Mayer, B. Gault, D. Ponge, Scr. Mater. 206, 114228 (2022) |
[8] | J. Zhang, B.H. Sun, Z.G. Yang, C. Zhang, H. Chen, Acta Metall. Sin. -Engl. Lett. 36, 1059 (2023) |
[9] | H.W. Luo, H. Dong, M.X. Huang, Mater. Des. 83, 42 (2015) |
[10] | J. Chen, M.Y. Lv, S. Tang, Z.Y. Liu, G.D. Wang, Mater. Charact. 106, 108 (2015) |
[11] | J. Hu, X.Y. Li, Q.W. Meng, L.Y. Wang, Y.Z. Li, W. Xu, Mater. Sci. Eng. A 855, 143904 (2022) |
[12] | R.L. Miller, Metall. Mater. Trans. B 3, 905 (1972) |
[13] | J. Shi, X.J. Sun, M.Q. Wang, W.J. Hui, H. Dong, W.Q. Cao, Scr. Mater. 63, 815 (2010) |
[14] | V.F. Zackay, E.R. Parker, D. Fahr, R. Busch, ASM Trans. Q 60, 252 (1967) |
[15] | B.H. Sun, A.K.D. Silva, Y.X. Wu, Y. Ma, H. Chen, C. Scott, D. Ponge, D. Raabe, Int. Mater. Rev. 68, 786 (2023) |
[16] | Y. Wang, R. Ding, C. Franke, T. Li, X.Q. Rong, P.Y. Wen, Z.G. Yang, H. Chen, Scr. Mater. 242, 115923 (2024) |
[17] | B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, H.W. Luo, M.X. Huang, Science 357, 1029 (2017) |
[18] |
R. Ding, Y.J. Yao, B.H. Sun, G. Liu, J.G. He, T. Li, X.H. Wan, Z.B. Dai, D. Ponge, D. Raabe, C. Zhang, A. Godfrey, G. Miyamoto, T. Furuhara, Z.G. Yang, S.V.D. Zwaag, H. Chen, Sci. Adv. 6, 1430 (2020)
DOI PMID |
[19] | R. Ding, Z.B. Dai, M.X. Huang, Z.G. Yang, C. Zhang, H. Chen, Acta Mater. 147, 59 (2018) |
[20] | Y. Zou, Y.B. Xu, Z.P. Hu, X.L. Gu, F. Peng, X.D. Tan, S.Q. Chen, D.T. Han, R.D.K. Misra, G.D. Wang, Mater. Sci. Eng. A 675, 153 (2016) |
[21] | S.H. Sun, A.M. Zhao, R. Ding, X.G. Li, Acta Metall. Sin. -Engl. Lett. 31, 216 (2018) |
[22] | X. Li, R.B. Song, N.P. Zhou, J.J. Li, Mater. Sci. Eng. A 709, 97 (2018) |
[23] | S. Mohapatra, A. Mandal, G. Poojari, S. Das, K. Das, Materials 28, 101781 (2023) |
[24] | T. Kang, Z.Z. Zhao, F. Li, L. Zhang, X.Y. Hou, Mate. Res. Express 8, 086517 (2021) |
[25] | J.J. Li, R.B. Song, X. Li, N.P. Zhou, R.F. Song, Mater. Sci. Eng. A 745, 212 (2019) |
[26] | A. Verma, M. Sundararaman, J.B. Singh, S.A. Nalawade, Meas. Sci. Technol. 21, 105106 (2010) |
[27] | J.J. Mueller, A.G. Glover, D.K. Matlock, J.G. Speer, E. De Moor, Steel Res. Int. 94, 2200947 (2023) |
[28] | J.H. Kim, G.Y. Gu, M. Koo, E.Y. Kim, J.S. Lee, D.W. Suha, Scr. Mater. 201, 113955 (2021) |
[29] | X.L. Zhang, J.H. Yan, T. Liu, H.J. Liu, Y.D. Shi, Q. Zhou, L.J. Zhao, Z. Lv, Mater. Sci. Eng. A 800, 140344 (2021) |
[30] | B.B. He, M.X. Huang, Z.Y. Liang, A.H.W. Ngan, H.W. Luo, J. Shi, W.Q. Cao, H. Dong, Scr. Mater. 69, 215 (2013) |
[31] | X.Y. Qi, L.X. Du, J. Hu, R.D.K. Misra, Mater. Sci. Technol. 35, 2134 ( (2019) |
[32] | K. Zhang, P. Liu, W. Li, F.C. Ma, Z.H. Guo, Y.H. Rong, Mater. Sci. Eng. A 716, 87 (2018) |
[33] | B.J. Hu, Q.Y. Zheng, Y. Lu, C.N. Jia, T. Liang, C.W. Zheng, D.Z. Li, Scr. Mater. 225, 115162 (2023) |
[34] | Z.H. Cai, H. Ding, X. Xue, J. Jiang, Q.B. Xin, R.D.K. Misra, Scr. Mater. 68, 865 (2013) |
[35] | K. Yan, L. Klaus-Dieter, I.B. Timokhina, E.V. Pereloma, Mater. Sci. Eng. A 662, 185 (2016) |
[36] | X.G. Wang, L. Wang, M.X. Huang, Acta Mater. 124, 17 (2017) |
[37] | D.V. Wilson, Acta Metall. 16, 743 (1968) |
[38] | R.A. Varin, B. Mazurek, D. Himbeault, Mater. Sci. Eng. 94, 109 (1987) |
[39] | Y. Prawoto, N. Jasmawati, K. Sumeru, J. Mater. Sci. Technol. 28, 461 (2012) |
[40] | X.H. Wan, G. Liu, Z.G. Yang, H. Chen, Scr. Mater. 198, 113819 (2021) |
[41] | J.H. Kim, G.Y. Gu, M.H. Kwon, M. Koo, E.Y. Kim, J.K. Kim, J.S. Lee, D.W. Suha, Acta Mater. 223, 117506 (2022) |
[42] | X.L. An, R.M. Zhang, Y.X. Wu, Y. Zou, L.T. Zhang, K. Zhang, L.Y. Wang, Y.S. Li, C.R. Hutchinson, W.W. Sun, Mater. Sci. Eng. A 831, 14228 (2022) |
[43] | L. Samek, E. De Moor, J. Penning, B.C. De Cooman, Metall. Mater. Trans. A 37, 109 (2006) |
[44] | M.H. Zhang, H.Y. Chen, Y.K. Wang, S.J. Wang, R.G. Li, S.L. Li, Y.D. Wang, J. Mater. Sci. Technol. 35, 1779 (2019) |
[45] | Z.H. Cai, H. Ding, R.D.K. Misra, H. Kong, Scr. Mater. 71, 5 (2014) |
[46] | A. Dutta, D. Ponge, S. Sandlöbes, D. Raabe, Materials 5, 100252 (2019) |
[47] | B.H. Sun, D. Palanisamy, D. Ponge, B. Gault, F. Fazeli, C. Scott, S. Yue, D. Raabe, Acta Mater. 164, 683 (2019) |
[48] | S.S. Xu, J.P. Li, Y. Cui, Y. Zhang, L.X. Sun, J. Li, J.H. Luan, Z.B. Jiao, X.L. Wang, C.T. Liu, Z.W. Zhang, Int. J. Plast. 128, 102677 (2020) |
[49] | C. Hu, C.P. Huang, Y.X.A. Perlade, K.Y. Zhu, M.X. Huang, Acta Mater. 245, 118629 (2023) |
[50] | J.H. Kim, M.H. Kwon, G.Y. Gu, J.S. Lee, D.W. Suh, Materials 12, 100757 (2020) |
[1] | Chenghao Liu, Wenchao Dong, Jian Sun, Shanping Lu. Effect of Precipitation Behavior and Deformation Twinning Evolution on the Mechanical Properties of 16Cr-25.5Ni-4.2Mo Superaustenitic Stainless Steel Weld Metals [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 338-352. |
[2] | Sai Chen, Shuangjie Chu, Bo Mao. Iron-Based Metal Matrix Composite: A Critical Review on the Microstructural Design, Fabrication Processes, and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 1-44. |
[3] | Zheng Liu, De-Chun Ren, Lian-Min Zhang, Ai-Li Ma, Hai-Bin Ji, Yu-Gui Zheng. Synergistic Improvement in Ductility and Hot Nitric Acid Corrosion Resistance of LPBF Ti-6Al-4V Alloy via Hot Isostatic Pressing [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 102-106. |
[4] | Qishan Sun, Shitong Wei, Shanping Lu. Coupling Effect Mechanism of the δ-Ferrite and M23C6 on the Mechanical Properties of 9Cr-Steel Deposited Metals [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 121-138. |
[5] | Hongwei Yan, Yong’an Zhang, Wei Xiao, Boyu Xue, Rui Liu, Xiwu Li, Zhihui Li, Baiqing Xiong. Experimental and DFT Investigations of AlNbTiVZr High Entropy Alloys with Excellent Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1480-1490. |
[6] | Zirui Chen, Liyuan Wang, Jiayu Zhao, Guanhua Cui, Zhuo Gao, Zhiyuan Fan, Xiaohui Shi, Junwei Qiao. Microstructure and Mechanical Properties of the Ti62Nb12Mo12Ta12W2 Refractory High Entropy Alloy Prepared through Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1387-1398. |
[7] | Shasha Qu, Yingju Li, Bingyu Lu, Cuiping Wang, Yuansheng Yang. Effects of Boron Addition on the Microstructure and Mechanical Properties of γ′-Strengthened Directionally Solidified CoNi-Base Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1438-1452. |
[8] | Guan-Cheng Gu, Zhao-Jing Han, Ze-Yu Chen, Zhao-Xuan Li, Sheng-Bao Xia, Zheng-Ning Li, Hua Jin, Wei-Wei Xu, Xing-Jun Liu. Theoretical Exploration of Alloying Effects on Stabilities and Mechanical Properties of γʹ Phase in Novel Co-Al-Nb-Base Superalloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1238-1248. |
[9] | Qi-Yu Liao, Da-Zhi Zhao, Qi-Chi Le, Wen-Xin Hu, Yan-Chao Jiang, Wei-Yang Zhou, Liang Ren, Dan-Dan Li, Zhao-Yang Yin. Effect of Artificial Cooling Extrusion on Microstructure and Mechanical Properties of Mg-Zn-Y Alloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1115-1127. |
[10] | Ziyue Xu, Huan Liu, Luyao Li, Chao Sun, Xi Tan, Baishan Chen, Qiangsheng Dong, Yuna Wu, Jinghua Jiang, Jiang Ma. Effect of Room Temperature Ultrasonic Vibration Compression on the Microstructure Evolution and Mechanical Properties of AZ91 Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1135-1146. |
[11] | Xiaofeng Ding, Zehao Wu, Tong Li, Jianxun Chen, Yuanhua Shuang, Baosheng Liu. Effect of Three-High Rotary Piercing Process on Microstructure, Texture and Mechanical Properties of Magnesium Alloy Seamless Tube [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 953-968. |
[12] | Huanzhi Zhang, Tianxin Li, Qianqian Wang, Zhenbo Zhu, Hefei Huang, Yiping Lu. Effects of Nitrogen Doping on Microstructures and Irradiation Resistance of Ti-Zr-Nb-V-Mo Refractory High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 1007-1018. |
[13] | Iman Ansarian, Reza Taghiabadi, Saeid Amini, Mohammad Hossein Mosallanejad, Luca Iuliano, Abdollah Saboori. Improvement of Surface Mechanical and Tribological Characteristics of L-PBF Processed Commercially Pure Titanium through Ultrasonic Impact Treatment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 1034-1046. |
[14] | Peng Chen, Wenhao Chen, Jiaxin Chen, Zhiyu Chen, Yang Tang, Ge Liu, Bensheng Huang, Zhiqing Zhang. Microstructure Evolution and Mechanical Properties of Friction Stir Welded Al-Cu-Li Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 855-871. |
[15] | Xiang Kong, Yu Wang, Hong Xu, Haotian Fan, Yuewu Zheng, Beibei Xie. NbB2 Modified Al-Cu Alloys Fabricated by Freeze-Ablation Casting under High Cooling Rate Solidification [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 921-938. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||