Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (4): 614-626.DOI: 10.1007/s40195-025-01824-2
Previous Articles Next Articles
Haijian Liu1,2, Tianle Li3, Xifeng Li1(), Huiping Wu1, Zhiqiang Wang4, Jun Chen1
Received:
2024-08-16
Revised:
2024-10-20
Accepted:
2024-12-03
Online:
2025-04-10
Published:
2025-02-25
Contact:
Xifeng Li, Haijian Liu, Tianle Li, Xifeng Li, Huiping Wu, Zhiqiang Wang, Jun Chen. Strength Optimization of Diffusion-Bonded Ti2AlNb Alloy by Post-Heat Treatment[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 614-626.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Schematic diagram of DB and heat treatment including solution and aging treatments in the present work, fast heating (FH) represents that the furnace temperature firstly reaches up to specifical temperature, followed by heating the specimens
Fig. 2 Tensile specimens: a schematic illustration of directionality of sample on as-received sheet and bonded sheets for tensile tests, geometries of tensile test specimen at 650 °C b and room temperature c, unit: mm
Fig. 3 SEM and TEM microstructures of as-received Ti2AlNb alloy, a secondary electron image with a magnified zone, b, b1 bright field (BF) image showing detailed grains, c the selected area electron diffraction (SAED) patterns of the positions at b1 marked by yellow circles and numbers
Fig. 5 Secondary electron images of samples at the substrates after solution and aging treatments: a the DB-1000/750 sample, b the DB-1000/800 sample, a1, b1 the corresponding magnified zones
Fig. 6 TEM a, b, c, STEM d, and EDS e characterizations showing the microstructures and element distribution in the DB-1000/750 sample: a, b BF images, c SAED patterns at the positions in a, b marked by yellow circles and numbers, d high-angle annular dark-field (HAADF) image, e HAADF image and element (Ti, Al, Nb) distribution
Fig. 7 EBSD characterization of the as-received sample a, f, substrate of the DB sample b, e, and the DB-1000/750 sample c: a, b, c phase map (red, blue, and green: O, B2, and α2 phases, respectively), d area fraction of the three phases, e inverse pole figure (IPF) map upon Y parallel to the normal direction (ND), f pole figure (PF) map showing the crystallographic parallel relationship between O and α2 grains in a, and the relationship between B2 and α2 grains in a
Fig. 8 Mechanical properties of Ti2AlNb alloy at room temperature and 650 °C: a engineering stress-strain curves at room temperature, b engineering stress-strain curves at 650 °C
Room temperature | 650 °C | |||||
---|---|---|---|---|---|---|
σs (MPa) | σb (MPa) | δ (%) | σs (MPa) | σb (MPa) | δ (%) | |
As-received | 904 | 942 | 5.16 | 583 | 594 | 24.1 |
DB | 780 | 873 | 9.7 | 531 | 539 | 21.9 |
DB-1000/750 | 971 | 992 | 3.0 | 832 | 858 | 4.6 |
DB-1000/800 | 1036 | 1057 | 1.7 | 885 | 898 | 2.2 |
Table 1 Mechanical properties including yield strength (σs), ultimate tensile strength (σb), and total elongation (δ) achieved at room temperature and 650 °C
Room temperature | 650 °C | |||||
---|---|---|---|---|---|---|
σs (MPa) | σb (MPa) | δ (%) | σs (MPa) | σb (MPa) | δ (%) | |
As-received | 904 | 942 | 5.16 | 583 | 594 | 24.1 |
DB | 780 | 873 | 9.7 | 531 | 539 | 21.9 |
DB-1000/750 | 971 | 992 | 3.0 | 832 | 858 | 4.6 |
DB-1000/800 | 1036 | 1057 | 1.7 | 885 | 898 | 2.2 |
Fig. 9 TEM observation of the as-received sample after tensile fracture at room temperature: a, b dislocation pile-up and tangle at fine O, α2, and B2 matrix, c distribution and characteristic of dislocations, c1 high density of dislocations within B2 grains. The scanning area is approximately 4 mm away from the fracture surface
Fig. 10 TEM characterization of the DB-1000/750 sample after tensile fracture at room temperature: a, b planar slip of dislocations at fine O, α2, and B2 matrix, c high density of dislocations within B2 grains, d a SAED pattern in c1. The scanning area is approximately 4 mm away from the fracture surface
Fig. 11 EBSD characterization of the as-received sample a, d, the substrate of the DB sample b, e, and the DB-1000/750 sample c, f after tensile fracture: a-c the whole kernel average misorientation (KAM) maps, d-f the local KAM value crossing the B2, O, and α2 grains. White arrows in a-c represent the distance in d-f
Fig. 12 SEM observation on the fracture surfaces of Ti2AlNb alloy after tension at room temperature: a the DB sample, b the DB-1000/800 sample, and the corresponding magnified zones
Fig. 13 Secondary electron images showing fracture section of Ti2AlNb alloy after tension at room temperature: a, b, c micro-cracks near fracture in the DB sample, d, e fracture crack path in the substate of DB-1000/800 sample, e1 the corresponding magnified zone
[1] | W. Ayadh, B. Denand, A. Halkoum, P. Boulet, M. Sennour, J. Delfosse, P. Sallot, V.A. Esin, Acta Mater. 225, 118930 (2023) |
[2] | F.H. Zhu, H.L. Peng, X.F. Li, J. Chen, Mater. Des. 159, 68 (2018) |
[3] | Z.G. Lu, J. Wu, R.P. Guo, L. Xu, R. Yang, Acta Metall. Sin.-Engl. Lett. 30, 621 (2017) |
[4] | B. Shao, W. Tang, S. Guo, Y.Y. Zong, D.B. Shan, B. Guo, Acta Mater. 242, 118467 (2023) |
[5] | T.L. Li, W. Fan, X.F. Li, H.P. Wu, D.Y. An, Q. Hu, J. Chen, Int. J. Plast. 179, 104033 (2024) |
[6] | X. Li, G.F. Wang, Y.B. Gu, D.F. Li, H. Fang, Mater. Des. 157, 351 (2018) |
[7] | Q.W. Zhang, T.L. Li, Y.B. Han, W. Zheng, X.F. Li, J.J. Wu, Acta Metall. Sin.-Engl. Lett. 37, 353 (2024) |
[8] | J.F. Fan, X.Q. Li, C.L. Pan, Z.C. Zhu, X.C. Wang, S.G. Qu, C. Yang, J.B. Hou, Intermetallics 163, 108044 (2023) |
[9] | L. Zhu, B. Tang, M.X. Ding, Y. Liu, X.F. Chen, S.P. Yan, J.S. Li, Rare Met. 39, 1402 (2020) |
[10] | S.S. Liu, J.X. Cao, Y. Zhou, S.L. Dai, X. Huang, C.X. Cao, Chin. J. Nonferrous Met. 31, 3106 (2021) |
[11] | D. Panov, S. Naumov, N. Stepanov, V. Sokolovsky, E. Volokitina, N. Kashaev, V. Ventzke, R. Dinse, S. Riekehr, E. Povolyaeva, N. Nochovnaya, E. Alekseev, S. Zherebtsov, G. Salishchev, Intermetallics 143, 107466 (2022) |
[12] | X.D. Cao, D.Y. An, Q. Liu, G.Q. Chen, X.F. Li, Intermetallics 167, 108214 (2024) |
[13] | Q. Zhao, M.Q. Lv, Z.S. Cui, Intermetallics 138, 107302 (2021) |
[14] | H.Y. Zhang, N. Yan, H.Y. Liang, Y.C. Liu, J. Mater. Sci. Technol. 80, 203 (2021) |
[15] | K. Goyal, N. Sardana, Trans. Indian Inst. Met. 74, 1839 (2021) |
[16] | H.Y. Zhang, Y.R. Zhang, H.Y. Liang, Y.C. Liu, Mater. Sci. Eng. A 817, 141345 (2021) |
[17] | H.Y. Zhang, Y.R. Zhang, H.Y. Liang, L.M. Yu, Y.C. Liu, J. Alloy. Compd. 846, 156458 (2020) |
[18] | K. Goyal, N. Sardana,Mater. Today Proc. 41, 951 (2021) |
[19] | C. Xue, W.D. Zeng, W. Wang, X.B. Liang, J.W. Zhang, Mater. Sci. Eng. A 587, 54 (2013) |
[20] | K.Z. Zhang, Z.L. Lei, Y.B. Chen, K. Yang, Y.F. Bao, Mater. Sci. Eng. A 744, 436 (2019) |
[21] | X. Chen, F.Q. Xie, T.J. Ma, W.Y. Li, X.Q. Wu, Mater. Des. 94, 45 (2016) |
[22] | Y.H. Zhou, D.W. Wang, L.J. Song, A. Mukhtar, D.N. Huang, C. Yang, M. Yan, Mater. Sci. Eng. A 817, 141352 (2021) |
[23] | J.Y. Man, L.H. Huang, J.J. He, H.O. Yang, X. Lin, J. Mater. Res. Technol. 33, 2549 (2024) |
[24] | F.H. Zhu, C.J. Chen, X.F. Li, J. Chen, Mater. Charact. 156, 109830 (2019) |
[25] | F.A. Sadi, C. Servant, Mater. Sci. Eng. A 346, 19 (2003) |
[26] | Y.M. Zhu, S.M. Zhu, M.S. Dargusch, J.F. Nie, Scr. Mater. 112, 46 (2016) |
[27] | M.W. Rackel, A. Stark, H. Gabrisch, N. Schell, A. Schreyer, F. Pyczak, Acta Mater. 121, 343 (2016) |
[28] | Y. Huang, Y.C. Liu, C. Li, Z.Q. Ma, L.M. Yu, H.J. Li, Vacuum 161, 209 (2019) |
[29] | C.F.O. Dahlberg, Y. Saito, M.S. Öztop, J.W. Kysar, J. Mech. Phys. Solids 105, 131 (2017) |
[30] | B. Shao, D.B. Shan, B. Guo, Y.Y. Zong, Int. J. Plast. 113, 18 (2019) |
[31] | K. Wang, H.H. Li, Y. Zhou, J.F. Wang, R.L. Xin, Q. Liu, Acta Metall. Sin.-Engl. Lett. 36, 353 (2023) |
[32] | T.L. Li, L.X. Zhong, H.P. Wu, D.Y. An, X.F. Li, J. Chen, J. Alloy. Compd. 918, 165816 (2022) |
[33] | T.L. Li, S. Yan, X.H. Liu, Mater. Lett. 301, 130249 (2021) |
[34] | T.L. Li, F.J. Zhou, L.Z. Long, B. Wang, Z.J. Tang, X.F. Li, Mater. Charact. 200, 112825 (2023) |
[35] | C. Jeon, B.C. Suh, C.P. Kim, H.S. Kim, N.J. Kim, S. Lee, Metall. Mater. Trans. A 46, 2506 (2015) |
[36] | Y.P. Zheng, W.D. Zeng, D. Li, H.Y. Ma, P.H. Zhang, X. Ma, J. Alloy. Compd. 799, 267 (2019) |
[37] | C.L. Zhang, X.Y. Bao, M.Y. Hao, W. Chen, D.D. Zhang, D. Wang, J.Y. Zhang, G. Liu, J. Sun, Nat. Commun. 13, 5966 (2022) |
[1] | Yaoxiang Geng, Keying Lv, Chunfeng Zai, Zhijie Zhang, Anil Kunwar. A High-Strength TiB2-Modified Al-Si-Mg-Zr Alloy Fabricated by Laser Powder-Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 542-554. |
[2] | X. W. Shang, Z. G. Lu, R. P. Guo, L. Xu. Influence of Hot Isostatic Pressing Temperature on Microstructure and Mechanical Properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 627-641. |
[3] | Jing Wang, Xuejian Wang, Zongning Chen, Huijun Kang, Tongmin Wang, Enyu Guo. In Vitro Corrosion Behavior and Mechanical Property of Novel Mg-Sn-In-Ga Alloys for Orthopedic Applications [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 353-366. |
[4] | Xiaotong Lu, Pingyun Yuan, Zhengquan Wang, Xiaocheng Li, Hanyuan Liu, Wenhao Zhou, Kun Sun, Yongliang Mu. Mechanical Properties and Corrosion Behavior of Porous Zn Alloy as Biodegradable Materials [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 367-382. |
[5] | Nafiseh Mollaei, Seyed Mahmood Fatemi, Mohammad Reza Aboutalebi, Seyed Hossein Razavi, Wiktor Bednarczyk. Microstructure, Texture, Mechanical Properties, and Corrosion Behavior of Biodegradable Zn-0.2Mg Alloy Processed by Multi-Directional Forging [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 507-525. |
[6] | Jian Dong, Jufu Jiang, Ying Wang, Minjie Huang, Jingbo Cui, Tao Song. Effect of Solution and Aging Treatment on Microstructure and Mechanical Properties of Al-14Si-5Cu-1.1Mg-2.3Ni-0.3La Alloy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(3): 449-464. |
[7] | Chenghao Liu, Wenchao Dong, Jian Sun, Shanping Lu. Effect of Precipitation Behavior and Deformation Twinning Evolution on the Mechanical Properties of 16Cr-25.5Ni-4.2Mo Superaustenitic Stainless Steel Weld Metals [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(2): 338-352. |
[8] | Sai Chen, Shuangjie Chu, Bo Mao. Iron-Based Metal Matrix Composite: A Critical Review on the Microstructural Design, Fabrication Processes, and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 1-44. |
[9] | Zheng Liu, De-Chun Ren, Lian-Min Zhang, Ai-Li Ma, Hai-Bin Ji, Yu-Gui Zheng. Synergistic Improvement in Ductility and Hot Nitric Acid Corrosion Resistance of LPBF Ti-6Al-4V Alloy via Hot Isostatic Pressing [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 102-106. |
[10] | Qishan Sun, Shitong Wei, Shanping Lu. Coupling Effect Mechanism of the δ-Ferrite and M23C6 on the Mechanical Properties of 9Cr-Steel Deposited Metals [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 121-138. |
[11] | Ye Liu, Shuran Chu, Hui Guo, Mengyao Kong, Chenxi Liu, Jingwen Zhang, Ran Ding, Yongchang Liu. Enhancing the Strength of Medium Mn Steel by Flash Treatment [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 139-150. |
[12] | Hongwei Yan, Yong’an Zhang, Wei Xiao, Boyu Xue, Rui Liu, Xiwu Li, Zhihui Li, Baiqing Xiong. Experimental and DFT Investigations of AlNbTiVZr High Entropy Alloys with Excellent Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(9): 1480-1490. |
[13] | Zirui Chen, Liyuan Wang, Jiayu Zhao, Guanhua Cui, Zhuo Gao, Zhiyuan Fan, Xiaohui Shi, Junwei Qiao. Microstructure and Mechanical Properties of the Ti62Nb12Mo12Ta12W2 Refractory High Entropy Alloy Prepared through Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1387-1398. |
[14] | Shasha Qu, Yingju Li, Bingyu Lu, Cuiping Wang, Yuansheng Yang. Effects of Boron Addition on the Microstructure and Mechanical Properties of γ′-Strengthened Directionally Solidified CoNi-Base Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(8): 1438-1452. |
[15] | Guan-Cheng Gu, Zhao-Jing Han, Ze-Yu Chen, Zhao-Xuan Li, Sheng-Bao Xia, Zheng-Ning Li, Hua Jin, Wei-Wei Xu, Xing-Jun Liu. Theoretical Exploration of Alloying Effects on Stabilities and Mechanical Properties of γʹ Phase in Novel Co-Al-Nb-Base Superalloys [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(7): 1238-1248. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||