Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (5): 904-914.DOI: 10.1007/s40195-024-01661-9
Previous Articles Next Articles
Keke Lu1, Congjiang Zhang1, Xiaotan Yuan1, Hongbin Yu1, Weili Ren1(), Biao Ding1, Haibiao Lu1(
), Yunbo Zhong1, Zuosheng Lei1, Hui Wang2, Qiuliang Wang2, Peter K. Liaw3, Xuezhi Qin4, Lanzhang Zhou4
Received:
2023-08-21
Revised:
2023-10-23
Accepted:
2023-11-26
Online:
2024-05-10
Published:
2024-06-14
Contact:
Weili Ren, wlren@staff.shu.edu.cn; Haibiao Lu, luhaibiao@shu.edu.cn
Keke Lu, Congjiang Zhang, Xiaotan Yuan, Hongbin Yu, Weili Ren, Biao Ding, Haibiao Lu, Yunbo Zhong, Zuosheng Lei, Hui Wang, Qiuliang Wang, Peter K. Liaw, Xuezhi Qin, Lanzhang Zhou. Effect of Magnetic Field Configuration on Stray-Crystal Formation with Different Platform Sizes during Directional Solidification of Single-Crystal Superalloy[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 904-914.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Schematic diagram of the cylindrical crucible with platforms: a 3:1; b 2:1 (The red and the blue dotted lines indicate the observation positions of the cross and the longitudinal sections, respectively)
Fig. 2 Solidified microstructure and the EBSD images of the transverse section at 5 mm above the 3:1 platform (The red dotted lines mark the boundary between the stray-crystal and the matrix single-crystal in the figure. The black dotted lines represent the enlarged view of the stray-crystal and the matrix single-crystal areas.): a1-a2 without magnetic field; b1-b2 CMF; c1-c2 LMF
Fig. 4 Microstructure of longitudinal section under the different configurations of magnetic fields above the 3:1 platform (The red dotted lines mark the boundary between the stray-crystal and the matrix single-crystal. The black dotted lines represent an enlarged view of some of the stray-crystal areas.): a1-a2 without magnetic field; b1-b2 CMF; c1-c2 LMF
Magnetic field configuration | Nearby melt in liquid-solid interface | Far melt from the liquid-solid interface |
---|---|---|
Without magnetic field | 0.19 | 1.3 |
CMF | 6 | 0.2 |
LMF | 19.2 | 0.12 |
Table 1 Average value of flow velocity in the melt as solidified to the platform (μm/s)
Magnetic field configuration | Nearby melt in liquid-solid interface | Far melt from the liquid-solid interface |
---|---|---|
Without magnetic field | 0.19 | 1.3 |
CMF | 6 | 0.2 |
LMF | 19.2 | 0.12 |
Fig. 9 Schematic diagram of the TEMF acting on the liquid-solid interface at the 3:1 platform: a CMF and b LMF (θ is the angle between the thermoelectric current and magnetic field)
Fig. 12 Schematic diagram of the evolution of TEMF at the liquid–solid interface with different platform sizes: a CMF; b LMF (The solid black lines represent 3:1 sample; the red dotted lines represent 2:1 sample; the blue lines represent magnetic lines of force; the arrows represent the magnetic field direction; ${\overrightarrow{B}}_{{\text{H}}}$ represents the strength of the horizontal component, indicating that it is getting stronger)
[1] | T.M. Pollock, S. Tin, J. Propul.Power 22, 361 (2006) |
[2] | W.S. Walston, K.S. O’hara, E.W. Ross, T.M. Pollock, W.H. Murphy, Rene’N6: third generation single crystal superalloy. Superalloys (1996). https://doi.org/10.7449/1996/SUPERALLOYS_1996_27_34 |
[3] | J. Zhang, T. Huang, L. Liu, H. Fu, Acta Metall. Sin. -Engl. Lett. 51, 1163 (2015) |
[4] | D. Ma, Q. Wu, A. Bührig-Polaczek, Adv. Mater. Res. 278, 417 (2011) |
[5] | X. Zhang, Y. Zhou, T. Jin, X. Sun, Acta Metall. Sin. 48, 1229 (2012) |
[6] | X. Meng, J. Li, Z. Chen, Y. Wang, S. Zhu, X. Bai, F. Wang, J. Zhang, T. Jin, X. Sun, Z. Hu, Metall. Mater. Trans. A 44, 1955 ( 2013) |
[7] | A.D. Bussac, C.A. Gandin, Mater. Sci. Eng. A 237, 35 (2017) |
[8] | S. Hu, W. Yang, Z. Li, H. Xu, T. Huang, J. Zhang, H. Su, L. Liu, Prog. Nat. Sci.: Mater. Int. 31, 624 (2021) |
[9] | Y. Li, L. Liu, T. Huang, J. Zhang, H. Fu, J. Alloys Compd. 657, 341 (2016) |
[10] | X. Meng, Q. Lu, J. Li, T. Jin, X. Sun, J. Zhang, Z. Chen, Y. Wang, Z. Hu, J. Mater. Sci. Technol. 28, 214 (2012) |
[11] | D. Ma, Q. Wu, S. Hollad, A. Bührig-Polaczek, I.O.P. Conf, Ser. Mater. Sci. Eng. 27, 012037 (2011) |
[12] | X. Yang, H. Dong, W. Wang, P.D. Lee, Mater. Sci. Eng. A 386, 129 (2004) |
[13] | D. Ma, A. Bührig-Polaczek, Metall. Mater. Trans. B 40, 738 (2009) |
[14] | D. Ma, A. Bührig-Polaczek, Int. J. Cast Met. Res. 22, 422 (2013) |
[15] | M. Meyer Ter Vehn, D. Dedecke, U. Paul, P.R. Sahm, Undercooling related casting defects in single crystal turbine blades. Superalloys (1996). https://doi.org/10.7449/1996/Superalloys_1996_471_479 |
[16] | D. Ma, Front. Mech. Eng. 13, 3 (2018) |
[17] | J. Zhang, L. Wang, D. Wang, Acta Metall. Sin. 55, 1077 (2019) |
[18] | C. Liu, H. Su, J. Zhang, Acta Metall. Sin. 54, 1428 (2018) |
[19] | Y. Li, Y. Teng, X. Feng, Y. Yang, J. Mater. Sci. Technol. 33, 105 (2017) |
[20] | K. Zhang, Y. Li, Y. Yang, J. Mater. Sci. Technol. 47, 9 (2020) |
[21] | W. Xuan, Z. Ren, C. Li, W. Ren, C. Chen, Z. Yu, Acta Metall. Sin. 48, 629 (2012) |
[22] | W. Ren, L. Lu, G. Yuan, W. Xuan, Y. Zhong, J. Yu, Z. Ren, Mater. Lett. 100, 223 (2013) |
[23] | W. Xuan, G. Song, F. Duan, Z. Xiao, W. Pan, Y. Zhang, C. Li, J. Wang, Z. Ren, Mater. Sci. Eng. A 803, 140729 (2021) |
[24] | Z. Su, C. Zhang, X. Yuan, X. Hu, K. Lu, W. Ren, B. Ding, T. Zheng, Z. Shen, Y. Zhong, H. Wang, Q. Wang, Acta Metall. Sin. 59, 1568 (2023) |
[25] | W. Xuan, Z. Ren, C. Li, Metall. Mater. Trans. A 46, 1461 (2015) |
[26] | X. Yuan, T. Zhou, W. Ren, J. Peng, T. Zheng, L. Hou, J. Yu, Z. Ren, P.K. Liaw, Y. Zhong, J. Mater. Sci. Technol. 62, 52 (2021) |
[27] | W. Ren, T. Zhou, X. Yuan, M. Jian, C. Zhang, B. Ding, J. Peng, T. Zheng, Y. Zhong, J. Mater. Sci. Technol. 106, 183 (2022) |
[28] | Y. Li, L. Liu, T. Huang, H. Wang, J. Zhang, H. Fu,Vacuum 131, 181 (2016) |
[29] | X. Li, Y. Fautrelle, Z. Ren, Acta Mater. 55, 3803 (2007) |
[30] | T. Alboussiere, A.C. Neubrand, J.P. Garandet, R. Moreau,Magnetohydrodynamics 31, 228 (1995) |
[31] | H.P. Utech, M.C. Flemings, J. Appl. Phys. 37, 2021 ( 1966) |
[32] | K. Terashima, T. Fukuda, J. Cryst.Growth 63, 423 (1983) |
[33] | A.G. Ostrogorsky, G. Müller, J. Cryst.Growth 128, 207 (1993) |
[34] | J. Kang, Y. Okano, K. Hoshikawa, T. Fukuda, J. Cryst.Growth 140, 435 (1994) |
[35] | J.A. Shercliff, J. Fluid Mech. 91, 231 (1979) |
[36] | W. Xuan, Z. Ren, C. Li, J. Alloys Compd. 620, 10 (2015) |
[37] | X. Li, Y. Fautrelle, A. Gagnoud, D. Du, J. Wang, Z. Ren, H. Nguyen-Thi, N. Mangelinck-Noel, Acta Mater. 64, 367 (2014) |
[38] | Y. Hou, Z. Zhang, W. Xuan, J. Wang, J. Yu, Z. Ren, Acta Metall. Sin. -Engl. Lett. 31, 681 (2018) |
[39] | J. Yu, Z. Ren, W. Ren, K. Deng, Y. Zhong, Acta Metall. Sin. -Engl. Lett. 22, 35 (2009) |
[40] | Y. Zhao, H. Su, G. Fan, C. Liu, T. Huang, W. Yang, J. Zhang, L. Liu, H. Fu, Acta Metall. Sin. -Engl. Lett. 35, 1164 (2022) |
[41] | W. Ren, C. Niu, B. Ding, Y. Zhong, J. Yu, Z. Ren, W. Liu, L. Ren, P.K. Liaw, Sci. Rep. 8, 1452 (2018) |
[1] | Zhezhu Lao, Xingpu Zhang, Jiangwei Wang, Jixue Li. Atomistic Evolution of Hf2S/γ′ Interfaces in a Hf-containing Ni-based Single-Crystal Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 1038-1046. |
[2] | Peng Peng, Shengyuan Li, Weiqi Chen, Yuanli Xu, Xudong Zhang, Zhikun Ma, Jiatai Wang. Phase Selection and Microhardness of Directionally Solidified AlCoCrFeNi2.1 Eutectic High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1281-1290. |
[3] | Yong Zhao, Haijun Su, Guangrao Fan, Chenglin Liu, Taiwen Huang, Wenchao Yang, Jun Zhang, Lin Liu, Hengzhi Fu. Tailoring Microstructure and Microsegregation in a Directionally Solidified Ni-Based SX Superalloy by a Weak Transverse Static Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1164-1174. |
[4] | Yan-Yi Xu, Jing Zhao, Chun-Yang Ye, Yan-Ping Shen, Xin-Cheng Miao, Yun-Hu Zhang, Qi-Jie Zhai. Distributions of Electromagnetic Fields and Forced Flow and Their Relevance to the Grain Refinement in Al-Si Alloy Under the Application of Pulsed Magneto-Oscillation [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 254-274. |
[5] | Huan Li, Shuai Zeng, Yong-Kang Zhou, Hai-Long Li, Hong-Wei Zhang, Hai-Feng Zhang, Zheng-Wang Zhu. High Tensile Strength and Superelasticity of Directionally Solidified Ti30Ni30Fe10Hf10Nb20 Eutectic High Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1583-1590. |
[6] | Leipeng Duan, Kang Wang, Engang Wang, Peng Jia. Precipitation of α-Fe from Fe84-xSi4B12+x (x = 1, 3) Amorphous Alloys Under High Magnetic Field Annealing [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1163-1172. |
[7] | Meng Yan, Cong Wang, Tianjiao Luo, Yingju Li, Xiaohui Feng, Qiuyan Huang, Yuansheng Yang. Effect of Pulsed Magnetic Field on the Residual Stress of Rolled Magnium Alloy AZ31 Sheet [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 45-53. |
[8] | Xudong Du, Feng Wang, Zhi Wang, Xingxing Li, Zheng Liu, Pingli Mao. Hot Tearing Susceptibility of AXJ530 Alloy Under Low-Frequency Alternating Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1259-1270. |
[9] | Yi-Fei Li, Li Wang, Gong Zhang, Dong-ng Qi, Kui Du, Lang-Hong Lou. Anisotropic Stress Rupture Properties of a 3rd-Generation Nickel-Based Single-Crystal Superalloy at 1100 °C/150 MPa [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 446-458. |
[10] | Sheng-Ya He, Chuan-Jun Li, Tong-Jun Zhan, Wei-Dong Xuan, Jiang Wang, Zhong-Ming Ren. Reduction in Microsegregation in Al-Cu Alloy by Alternating Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 267-274. |
[11] | Jinshan He, Zhengrong Yu, Longfei Li, Xitao Wang, Qiang Feng. Effect of grit blasting and subsequent heat treatment on stress rupture property of a Ni-based single-crystal superalloy SGX3 [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1681-1688. |
[12] | Kuiliang Zhang, Yingju Li, Yuansheng Yang. Simulation of the Influence of Pulsed Magnetic Field on the Superalloy Melt with the Solid-Liquid Interface in Directional Solidification [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1442-1454. |
[13] | Bin Yin, Guang Xie, Xiangwei Jiang, Shaohua Zhang, Wei Zheng, Langhong Lou. Microstructural Instability of an Experimental Nickel-Based Single-Crystal Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1433-1441. |
[14] | Liu Liu, Jie Meng, Jin-Lai Liu, Hai-Feng Zhang, Xu-Dong Sun, Yi-Zhou Zhou. Effects of Crystal Orientations on the Low-Cycle Fatigue of a Single-Crystal Nickel-Based Superalloy at 980 °C [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(3): 381-390. |
[15] | Xiao-Yang Wei, Masoumeh Moradi, Li-Jing Yang, Zhen-Lun Song, Bi-Zhang Zheng, Zhan-Peng Lu. Influence of Static Low Electromagnetic Field on Copper Corrosion in the Presence of Multispecies Aerobic Bacteria [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(10): 1287-1297. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||