Acta Metallurgica Sinica (English Letters) ›› 2024, Vol. 37 ›› Issue (5): 889-903.DOI: 10.1007/s40195-024-01667-3
Previous Articles Next Articles
Mengcheng Zhou1, Yaxiong Dai1, Changhao Liu1, Shengli Ding1,2(), Xinfang Zhang1(
)
Received:
2023-10-31
Revised:
2023-12-05
Accepted:
2023-12-07
Online:
2024-05-10
Published:
2024-06-14
Contact:
Shengli Ding, 1538202748@qq.com; Xinfang Zhang, xfzhang@ustb.edu.cn
Mengcheng Zhou, Yaxiong Dai, Changhao Liu, Shengli Ding, Xinfang Zhang. Migration Behavior of Impurity Iron in Silicon Melt Under Pulsed Electric Current[J]. Acta Metallurgica Sinica (English Letters), 2024, 37(5): 889-903.
Add to citation manager EndNote|Ris|BibTeX
Si | Fe | Ca | Al | V | Ti |
---|---|---|---|---|---|
Bal. | 0.3381 | 0.0144 | 0.0685 | 0.0474 | 0.0407 |
Table 1 Chemical composition of metallurgical silicon (wt%)
Si | Fe | Ca | Al | V | Ti |
---|---|---|---|---|---|
Bal. | 0.3381 | 0.0144 | 0.0685 | 0.0474 | 0.0407 |
Fig. 1 a Schematic diagram of experimental equipment; b different insertion methods of electrodes: shallow insertion (the electrode is inserted into 1/4 of the melt) and full insertion; c schematic diagram of sample cutting and sampling position
Electrode insertion method | Samples | Frequency (Hz) | Current (A) | Duty cycle ratio (%) |
---|---|---|---|---|
Without EPT | - | - | - | |
Shallow insertion and full insertion | EPT-200 Hz | 200 | 150 | 20 |
EPT-1000 Hz | 1000 | 150 | 20 | |
EPT-2500 Hz | 2500 | 150 | 20 | |
EPT-3500 Hz | 3500 | 150 | 20 | |
Shallow insertion | EPT-20A | 1000 | 20 | 20 |
EPT-80A | 1000 | 80 | 20 | |
EPT-150A | 1000 | 150 | 20 | |
Full insertion | EPT-20A | 1500 | 20 | 20 |
EPT-80A | 1500 | 80 | 20 | |
EPT-150A | 1500 | 150 | 20 |
Table 2 Experimental parameters of EPT treatment
Electrode insertion method | Samples | Frequency (Hz) | Current (A) | Duty cycle ratio (%) |
---|---|---|---|---|
Without EPT | - | - | - | |
Shallow insertion and full insertion | EPT-200 Hz | 200 | 150 | 20 |
EPT-1000 Hz | 1000 | 150 | 20 | |
EPT-2500 Hz | 2500 | 150 | 20 | |
EPT-3500 Hz | 3500 | 150 | 20 | |
Shallow insertion | EPT-20A | 1000 | 20 | 20 |
EPT-80A | 1000 | 80 | 20 | |
EPT-150A | 1000 | 150 | 20 | |
Full insertion | EPT-20A | 1500 | 20 | 20 |
EPT-80A | 1500 | 80 | 20 | |
EPT-150A | 1500 | 150 | 20 |
Fig. 3 a SEM images of iron phase distribution in different areas of the sample without pulsed electric current; b schematic diagram of the distribution area of large-sized iron phases (the yellow area represents iron phase aggregation area with a length greater than 200 μm); c area percentage of iron phase from left area to right area of the sample without EPT; d area percentage of iron phase from top area to bottom area of the sample without EPT
Fig. 4 Distribution of iron phase at different pulsed frequency under shallow insertion: a sample EPT-200 Hz, b sample EPT-1000 Hz, c sample EPT-2500 Hz, d sample EPT-3500 Hz
Fig. 5 Histogram of iron phase area percentage from top to bottom at different pulsed frequencies under shallow insertion: a sample EPT-200 Hz, b sample EPT-1000 Hz, c sample EPT-2500 Hz, d sample EPT-3500 Hz
Fig. 6 Distribution of iron phase at different pulsed frequencies under full insertion: a sample EPT-200 Hz, b sample EPT-1000 Hz, c sample EPT-2500 Hz, d sample EPT-3500 Hz
Fig. 7 Histogram of iron phase area percentage from anode to cathode at different pulsed frequencies under full insertion: a sample EPT-200 Hz, b sample EPT-1000 Hz, c sample EPT-2500 Hz, d sample EPT-3500 Hz
Fig. 13 Distribution of iron phase at different pulsed current intensities under shallow insertion: a sample EPT-20A, b sample EPT-80A, c sample EPT-150A
[1] | J.W. Guo, X.M. Liu, J.M. Yu, C.F. Xu, Y.F. Wu, D.A. Pan, R.A. Senthil, Resour. Conserv. Recycl. 169, 105450 (2021) |
[2] | J.W. Li, Y.H. Lin, F.M. Wang, J. Shi, J.F. Sun, B.Y. Ban, G.C. Liu, J. Chen, Sep. Purif. Technol. 254, 117581 (2021) |
[3] | F. Yang, J.J. Wu, W.H. Ma,JOM 72, 2663 (2020) |
[4] | S.F. Yin, J.H. Wang, Z.S. Li, X. Fang, Renew. Sust. Energy Rev. 138, 110647 (2021) |
[5] | T.P. Teixeira, C.L.T. Borges, J. Mod. Power Syst. Cle. 9, 190 (2021) |
[6] | Y.Q. Zhu, Z.J. Chen, H.M. Zhang, W.H. Ma, J.J. Wu,Energy 254, 124459 (2022) |
[7] | S.K. Kurinec, Silicon Solar Photovoltaics (Springer, Cham, 2022), pp. 221-243 |
[8] | T. Lv, L. Qi, R.Z. Zhang, Appl. Opt. 61, 8944 (2022) |
[9] | Y. Delannoy, C. Alemany, K.I. Li, P. Proulx, C. Trassy, Sol. Energy Mater. Sol.C 72, 69 (2002) |
[10] | R. Ye, T. Ishigaki, H. Taguchi, S. Ito, A.B. Murphy, H. Lange, J. Appl. Phys. 100, 103303 (2006) |
[11] | L. Cadoret, N. Reuge, S. Pannala, M. Syamlal, C. Coufort, B. Caussat, Surf. Coat. Technol. 201, 8919 (2007) |
[12] | T. Lin, C.Y. Duan, J. Phys. Conf. Ser. 2174, 012024 (2022) |
[13] | X.L. Guo, P.F. Xing, S. Wang, J. Kong, S.N. Jiang, Y.X. Zhuang,Hydrometallurgy 213, 105948 (2022) |
[14] | S.C. Yang, X.H. Wan, K.X. Wei, W.H. Ma, Z. Wang, Waste Manag. 120, 820 (2021) |
[15] | T. Liu, Z.Y. Dong, Y.W. Zhao, J. Wang, T. Chen, H. Xie, J. Li, H.J. Ni, D.X. Huo, J. Cryst.Growth 355, 145 (2012) |
[16] | H. Nishimoto, Y. Kang, T. Yoshikawa, K. Morita, High Temp. Mater. Process. 31, 471 (2012) |
[17] | X.C. Deng, L. Zhou, K.X. Wei, W.H. Ma,Vacuum 207, 111581 (2023) |
[18] | J. Kong, D.H. Wei, P.F. Xing, X. Jin, Y.X. Zhuang, S. Yan, J. Clean. Prod. 286, 124979 (2021) |
[19] | P.T. Li, Z.Q. Hu, Z.L. Wang, S.T. Wen, J.Y. Li, D.C. Jiang, Y. Tan,Vacuum 190, 110291 (2021) |
[20] | J. Schwan, B. Wagner, M. Kim, L. Mangolini, J. Phys.D 55, 094002 (2022) |
[21] | P.T. Li, L. Dong, Z.Q. Hu, S.Q. Ren, Y. Tan, D.C. Jiang, X.G. You, J. Clean. Prod. 355, 131716 (2022) |
[22] | X.F. Zhang, R.S. Qin, Sci. Rep. 5, 10162 (2015) |
[23] | X.F. Zhang, R.S. Qin, Mater. Sci. Technol. 33, 1399 (2017) |
[24] | G.Z. Zhang, L.G. Yan, X.F. Zhang, ISIJ Int. 60, 815 (2020) |
[25] | X.S. Huang, H.L. Zhao, C.Y. Wang, X.F. Zhang, J. Clean. Prod. 276, 123358 (2020) |
[26] | B.Y. Zhang, X.S. Huang, X.F. Zhang, B.Z. Ma, C.Y. Wang, J. Clean. Prod. 396, 136577 (2023) |
[27] | S.F. Ren, L.G. Yan, X.F. Zhang, H. Wang, Y.B. Fu,JOM 72, 4101 (2020) |
[28] | R.S. Qin, H.C. Yan, G.H. He, B.L. Zhou, Chin. J. Mater. Res. 9, 219 (1995) |
[29] | R.S. Qin, A. Bhowmik, Mater. Sci. Technol. 31, 1560 (2015) |
[30] | X.F. Zhang, R.S. Qin, Appl. Phys. Lett. 104, 114106 (2014) |
[31] | N. Li, H.P. Yu, Z. Xu, Z.S. Fan, L. Liu, Mater. Sci. Eng. A 673, 222 (2016) |
[32] | D.K. Belashchenko, Russ. Chem. Rev. 34, 219 (1965) |
[33] | E.D. Williams, Solid State Commun. 107, 681 (1998) |
[34] | P.S. Ho, T. Kwok, Rep. Prog. Phys. 52, 301 (1989) |
[1] | Kun Yi, Siqi Xiang, Mengcheng Zhou, Xinfang Zhang, Furui Du. Altering the Residual Stress in High-Carbon Steel through Promoted Dislocation Movement and Accelerated Carbon Diffusion by Pulsed Electric Current [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(9): 1511-1522. |
[2] | Jun-Yang Gao, Xue-Bing Liu, Hai-Fei Zhou, Xin-Fang Zhang. Modification of Corrosion Resistance of the Plain Carbon Steels by Pulsed Electric Current [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(12): 1233-1239. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||