Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (2): 254-274.DOI: 10.1007/s40195-021-01242-0
Previous Articles Next Articles
Yan-Yi Xu1, Jing Zhao2, Chun-Yang Ye1, Yan-Ping Shen1, Xin-Cheng Miao3, Yun-Hu Zhang1(), Qi-Jie Zhai1
Received:
2021-01-02
Revised:
2021-02-25
Accepted:
2021-03-06
Online:
2022-02-10
Published:
2021-05-09
Contact:
Yun-Hu Zhang
About author:
Yun-Hu Zhang, zhangyunhu.zyh@163.comYan-Yi Xu, Jing Zhao, Chun-Yang Ye, Yan-Ping Shen, Xin-Cheng Miao, Yun-Hu Zhang, Qi-Jie Zhai. Distributions of Electromagnetic Fields and Forced Flow and Their Relevance to the Grain Refinement in Al-Si Alloy Under the Application of Pulsed Magneto-Oscillation[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 254-274.
Add to citation manager EndNote|Ris|BibTeX
Thermophysical properties | Al-7wt%Si | Ga-20wt%In-12wt%Sn |
---|---|---|
Liquidus, TL (°C) | 615 | 10.5 |
Density, ρ (kg m-3) | 2422 | 6360 |
Viscosity, υ (m2 s-1) | 0.5 × 10-6 | 0.34 × 10-6 |
Electrical conductivity, σ (S m-1) | 3.74 × 106 | 3.27 × 106 |
Relative permeability, mr | 1 | 1 |
Relative permittivity, ε | 1 | 1 |
Table 1 Thermophysical properties of Al-7wt%Si and Ga-20wt%In-12wt%Sn alloy [5]
Thermophysical properties | Al-7wt%Si | Ga-20wt%In-12wt%Sn |
---|---|---|
Liquidus, TL (°C) | 615 | 10.5 |
Density, ρ (kg m-3) | 2422 | 6360 |
Viscosity, υ (m2 s-1) | 0.5 × 10-6 | 0.34 × 10-6 |
Electrical conductivity, σ (S m-1) | 3.74 × 106 | 3.27 × 106 |
Relative permeability, mr | 1 | 1 |
Relative permittivity, ε | 1 | 1 |
Fig. 4 Macrostructures of Al-7wt%Si alloy in the longitudinal section with and without PMO: a reference sample; b PMO with Ip = 1500 A, f = 10 Hz, tp = 2.7 ms
Fig. 5 Microstructures of Al-7wt%Si alloy in the longitudinal section with and without PMO: a reference sample; b PMO with Ip = 1500 A, f = 10 Hz, tp = 2.7 ms
Fig. 6 a Measurement of magnetic flux density in the air induced by PMO with parameters of Ip = 1500 A, f = 10 Hz, tp = 2.7 ms along three directions at the center of coils b comparison between simulation and measurement results in the Z-direction
Fig. 7 Comparison of measured and calculated magnetic flux density (Z component) along central axis of coils in the air under the application of PMO with parameters of Ip = 1500 A, f = 10 Hz, tp = 2.7 ms
Fig. 8 Comparison of measured and calculated vertical velocity along central axis of Ga-20wt%In-12wt%Sn alloy under the application of PMO with parameters of Ip = 1500 A, f = 10 Hz, tp = 2.7 ms
Fig. 9 a Schematic view of selected position at the height of 47.5 mm and the radius of 25 mm b evolution of the conducted electric current, the magnetic field (Bz), the electric eddy current (J) and the radial Lorentz force (Fr) at the position in the Ga-20wt%In-12wt%Sn alloy induced by PMO with parameters of Ip = 1500 A, f = 10 Hz, tp = 2.7 ms
Fig. 10 Distribution of the magnetic field inside the Ga-20wt%In-12wt%Sn alloy under PMO with parameters of Ip = 1500 A, f = 10 Hz, tp = 2.7 ms: (I) schematic view of selected points in the curve of the vertical magnetic field at position of height 47.5 mm and radius 25 mm; a 0.3 ms; b 0.6 ms; c 1.0 ms; d 1.3 ms; e 1.6 ms; f 1.9 ms; g 2.3 ms; h 2.7 ms
Fig. 11 Distribution of the electric eddy current inside the Ga-20wt%In-12wt%Sn alloy under PMO with parameters of Ip = 1500 A, f = 10 Hz, tp = 2.7 ms: (I) schematic view of selected points in the curve of the electric eddy current at position of height 47.5 mm and radius 25 mm; a 0.1 ms; b 0.2 ms; c 0.3 ms; d 0.6 ms; e 0.9 ms; f 1.2 ms; g 1.5 ms; h 1.9 ms; i 2.2 ms; j 2.7 ms; k 3.2 ms; l 4.0 ms
Fig. 12 Distribution of the radial Lorentz force in the Ga-20wt%In-12wt%Sn alloy under PMO with parameters of Ip = 1500 A, f = 10 Hz, tp = 2.7 ms: (I) schematic view of selected points in the curve of the radial Lorentz force at position of height 47.5 mm and radius 25 mm; a 0.1 ms; b 0.2 ms; c 0.4 ms; d 0.6 ms; e 0.8 ms; f 0.9 ms; g 1.1 ms; h 1.4 ms; i 1.7 ms; j 2.1 ms; k 2.4 ms; l 2.7 ms
Fig. 13 Numerical simulation of vertical forced flow in the Ga-20wt%In-12wt%Sn alloy under PMO with parameters of Ip = 1500 A, f = 10 Hz, tp = 2.7 ms: a contour in the middle plane; b arrow surface in the middle plane
Fig. 14 Contours of the vertical velocity measured in the Ga-20wt%In-12wt%Sn alloy under PMO with parameters of Ip = 1500 A, f = 10 Hz, tp = 2.7 ms: a center, b 1/4D1 and c 4/5D1
Fig. 15 Schematic views of selected positions along radial direction at the height of 47.5 mm a, vertical direction at the radius of 27 mm c, and the corresponding curves of the radial Lorentz force along radial direction b and time-averaged radial Lorentz force along vertical direction d in the Ga-20wt%In-12wt%Sn alloy induced by PMO with parameters of Ip = 1500 A, f = 10 Hz, tp = 2.7 ms
Fig. 16 Numerical simulation of Al-7wt%Si alloy under PMO with parameters of Ip = 1500 A, f = 10 Hz, tp = 2.7 ms in the middle plane: a magnetic field; b electric eddy current; c Lorentz force; d vertical velocity
Fig. 17 Selected curves (see Fig. 15) of the Lorentz force along radial direction a and time-averaged radial Lorentz force along vertical direction b inside Al-7wt%Si alloy induced by PMO with parameters of Ip = 1500 A, f = 10 Hz, tp = 2.7 ms
Fig. 18 Numerical simulated forced flow in the Al-7wt%Si alloy under PMO parameters of a Ip = 1500 A, f = 2 Hz, tp = 2.7 ms; b Ip = 500 A, f = 14 Hz, tp = 2.7 ms
Fig. 19 Curves of the magnetic flux density a, the electric current density b and the Lorentz force c at position of height 47.5 mm and radius 25 mm inside Al-7wt%Si alloy induced by PMO
PMO parameters | Magnetic pressure (Pa) | Joule heating (W/m3) | Lorentz force (N/m3) |
---|---|---|---|
1500 A, 2 Hz, 2.7 ms | 6.33 × 103 | 3.44 × 104 | 7.98 × 105 |
500 A, 14 Hz, 2.7 ms | 0.68 × 103 | 2.64 × 104 | 0.88 × 105 N/m3 |
Table 2 Maximum values of PMO magnetic pressure, Lorentz force and time-averaged Joule heating at position of height 47.5 mm and radius 25 mm inside Al-7wt%Si
PMO parameters | Magnetic pressure (Pa) | Joule heating (W/m3) | Lorentz force (N/m3) |
---|---|---|---|
1500 A, 2 Hz, 2.7 ms | 6.33 × 103 | 3.44 × 104 | 7.98 × 105 |
500 A, 14 Hz, 2.7 ms | 0.68 × 103 | 2.64 × 104 | 0.88 × 105 N/m3 |
Fig. 20 Macrostructures of Al-7wt%Si alloy in the longitudinal section with different PMO parameters: a Ip = 1500 A, f = 2 Hz, tp = 2.7 ms; b Ip = 500 A, f = 14 Hz, tp = 2.7 ms
Fig. 21 Microstructures of Al-7wt%Si alloy in the longitudinal section with different PMO parameters: a Ip = 1500 A, f = 2 Hz, tp = 2.7 ms; b Ip = 500 A, f = 14 Hz, tp = 2.7 ms
[1] | R.G. Guan, D. Tie, Acta Metall. Sin. Engl. Lett. 30, 409 (2017) |
[2] |
J.G. Jung, T.Y. Ahn, Y.H. Cho, S.H. Kim, J.M. Lee, Acta Mater. 144, 31 (2018)
DOI URL |
[3] |
N. Li, L.M. Zhang, R. Zhang, P.F. Yin, Metals 9, 571 (2019)
DOI URL |
[4] | T. Ahmed, H.X. Jiang, W. Li, J.Z. Zhao, Acta Metall. Sin. Engl. Lett. 31, 842 (2018) |
[5] |
D. Räbiger, Y.H. Zhang, V. Galindo, S. Franke, Acta Mater. 79, 327 (2014)
DOI URL |
[6] |
Y.H. Zhang, Y.Y. Xu, C.Y. Ye, C. Sheng, G. Wang, X.C. Miao, C.J. Song, Q.J. Zhai, Sci. Rep. 8, 3242 (2018)
DOI PMID |
[7] |
Y.H. Zhang, X.C. Miao, Z.Y. Shen, Q.Y. Han, C.J. Song, Q.J. Zhai, Acta Mater. 97, 357 (2015)
DOI URL |
[8] |
Y. Ruan, Q.Q. Gu, P. Lv, H.P. Wang, B.B. Wei, Mater. Des. 112, 239 (2016)
DOI URL |
[9] |
H.P. Wang, P. Lv, X. Cai, B. Zhai, J.F. Zhao, B.B. Wei, Mater. Sci. Eng. A 772, 138660 (2020)
DOI URL |
[10] |
Z.M. Yan, H. Liu, T.J. Li, X.Q. Zhang, Z.Q. Cao, X.L. Zhang, Mater. Des. 30, 1245 (2009)
DOI URL |
[11] |
K.L. Zhang, Y.J. Li, Y.Y. Yang, J. Mater. Sci. Technol. 48, 9 (2020)
DOI URL |
[12] | W.C. Duan, S.Q. Yin, W.H. Liu, Z. Zhao, K. Hu, P. Wang, J.W. Cui, Z.Q. Zhang, J. Magnes. Alloy. In press (2020) |
[13] |
L. Li, W.L. Liang, C.Y. Ban, Y.S. Suo, G.C. Lv, T. Liu, X.J. Wang, H. Zhang, J.Z. Cui, Mater. Charact. 163, 110274 (2020)
DOI URL |
[14] |
B.T. Zi, Q.X. Ba, J.Z. Cui, Y.G. Bai, X.J. Na, Acta Phys. Sin. 49, 1010 (2000)
DOI URL |
[15] |
Y.L. Gao, Q.S. Li, Y.Y. Gong, Q.J. Zhai, Mater. Lett. 61, 4011 (2007)
DOI URL |
[16] | X.L. Liao, Y.Y. Gong, R.X. Li, W.J. Chen, Q.J. Zhai, China Found. 4, 116 (2007) |
[17] |
B. Wang, Y.S. Yang, J.X. Zhou, W.H. Tong, Trans. Nonferrous Met. Soc. China 18, 536 (2008)
DOI URL |
[18] | Y.S. Yang, J.W. Fu, T.J. Luo, B. Wang, X.H. Feng, W.H. Tong, Y.J. Li, Chin. J. Nonferrous Met. 21, 2639 (2011) |
[19] |
Y.J. Li, W.Z. Tao, Y.S. Yang, J. Mater. Process. Technol. 212, 903 (2012)
DOI URL |
[20] |
Y.Y. Gong, J. Luo, J.X. Jing, Z.Q. Xia, Q.J. Zhai, Mater. Sci. Eng. A 497, 147 (2008)
DOI URL |
[21] |
Z.X. Yin, Y.Y. Gong, B. Li, Y.F. Cheng, D. Liang, Q.J. Zhai, J. Mater. Process. Technol. 212, 2629 (2012)
DOI URL |
[22] |
I. Edry, A. Shoihet, S. Hayun, J. Mater. Process. Technol. 288, 116844 (2021)
DOI URL |
[23] | I. Edry, T. Mordechai, N. Frage, S. Hayun, Metall. Mater. Trans. A Phys. Metall. Mater. 47, 1261 (2016) |
[24] |
J. Zhao, J. Yu, Q. Li, H.G. Zhong, C.J. Song, Q.J. Zhai, Mater. Sci. Technol. 31, 1589 (2015)
DOI URL |
[25] | J. Sun, C. Sheng, D.P. Wang, Y.H. Zhang, H.G. Zhong, Z.S. Xu, J.L. Li, Q.J. Zhai, J. Iron, Steel Res. Int. 25, 862 (2018) |
[26] | D. Liang, Z.Y. Liang, J. Sun, Q.J. Zhai, G. Wang, China Found. 12, 48 (2015) |
[27] |
I. Edry, N. Frage, S. Hayun, Mater. Lett. 182, 118 (2016)
DOI URL |
[28] |
A.F. Kolesnichenko, A.D. Podoltsev, I.N. Kucheryavaya, ISIJ Int. 34, 715 (1994)
DOI URL |
[29] |
Q.C. Le, S.J. Guo, Z.H. Zhao, J.Z. Cui, J. Mater. Process. Technol. 183, 194 (2007)
DOI URL |
[30] |
J. Zhao, Y. Cheng, K. Han, X.Z. Zhang, Z.S. Xu, J. Mater. Process. Technol. 229, 286 (2016)
DOI URL |
[31] | J. Zhao, J.H. Yu, K. Han, H.G. Zhong, R.X. Li, Q.J. Zhai, Acta Metall. Sin. Engl. Lett. 31, 1334 (2018) |
[32] | K.L. Zhang, Y.J. Li, Y.S. Yang, Acta Metall. Sin. Engl. Lett. 33, 1442 (2020) |
[33] | Y.F. Teng, Y.J. Li, X.H. Feng, Y.S. Yang, Acta Metall. Sin. 51, 844 (2015) |
[34] | G.F.V. Voort (ed.), Practical Applications of Quantitative Metallography: Grain Size Measurement (American Society for Testing and Materials, Philadelphia, 1984) |
[35] |
Y. Takeda, Nucl. Eng. Des. 126, 277 (1991)
DOI URL |
[36] |
B.E. Launder, D.B. Spalding, Comput. Methods Appl. Mech. Eng. 3, 269 (1974)
DOI URL |
[37] |
B. Wang, Y.S. Yang, J. Zhou, W. Tong, Mater. Sci. Technol. 27, 176 (2011)
DOI URL |
[38] | R.S. Qin, H.C. Yan, G.H. He, B.L. Zhou, Chin. J. Mater. Res. 9, 219 (1995) |
[1] | Yanan Wang, Sansan Shuai, Chenglin Huang, Tao Jing, Chaoyue Chen, Tao Hu, Jiang Wang, Zhongming Ren. Revealing the Diversity of Dendritic Morphology Evolution During Solidification of Magnesium Alloys using Synchrotron X-ray Imaging: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 177-200. |
[2] | Zhenhao Li, Ling Qin, Baisong Guo, Junping Yuan, Zhiguo Zhang, Wei Li, Jiawei Mi. Characterization of the Convoluted 3D Intermetallic Phases in a Recycled Al Alloy by Synchrotron X-ray Tomography and Machine Learning [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 115-123. |
[3] | Zongye Ding, Qiaodan Hu, Fan Yang, Liao Yu, Tianxing Yang, Naifang Zhang, Wenquan Lu, Jingwei Yang, Jian Qiao, Jianguo Li. Unveiling the Growth Mechanism of Faceted Primary Al2Cu with Complex Morphologies During Solidification [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 124-132. |
[4] | Guang Zeng, Shiqian Liu, Qinfen Gu, Zebang Zheng, Hideyuki Yasuda, Stuart D. McDonald, Kazuhiro Nogita. Investigation on the Solidification and Phase Transformation in Pb-Free Solders Using In Situ Synchrotron Radiography and Diffraction: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 49-66. |
[5] | Yan Song, Hongxiang Jiang, Lili Zhang, Shixin Li, Jiuzhou Zhao, Jie He. A Model Describing Solidification Microstructure Evolution in an Inoculated Aluminum Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 861-871. |
[6] | Zongye Ding, Naifang Zhang, Liao Yu, Wenquan Lu, Jianguo Li, Qiaodan Hu. Recent Progress in Metallurgical Bonding Mechanisms at the Liquid/Solid Interface of Dissimilar Metals Investigated via in situ X-ray Imaging Technologies [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 145-168. |
[7] | Jie Wei, Qudong Wang, Li Zhang, Mahmoud Ebrahimi, Haiyan Jiang, Wenjiang Ding. Effects of Gd Addition on the Microstructure and Tensile Properties of Mg-4Al-5RE Alloy Produced by Three Different Casting Methods [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1361-1374. |
[8] | Miao Wang, Xing-Wei Huang, Peng Xue, Chuan-Yong Cui, Qing-Chuan Zhang. Effect of Rotation Rate on Microstructure and Mechanical Properties of Friction Stir Processed Ni-Fe-Based Superalloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1407-1420. |
[9] | Fenghua Wang, Peng Su, Linxin Qin, Shuai Dong, Yunliang Li, Jie Dong. Microstructure and Mechanical Properties of Mg-3Al-Zn Magnesium Alloy Sheet by Hot Shear Spinning [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(9): 1226-1234. |
[10] | Mohamad Ebrahimnia, Yujiang Xie, Changtai Chi. Effect of laser power and deposition environment on the microstructure and properties of direct laser metal-deposited 12CrNi2 steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(4): 528-538. |
[11] | Sheng-Ya He, Chuan-Jun Li, Tong-Jun Zhan, Wei-Dong Xuan, Jiang Wang, Zhong-Ming Ren. Reduction in Microsegregation in Al-Cu Alloy by Alternating Magnetic Field [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 267-274. |
[12] | Han Zheng, Liming Fu, Xinbo Ji, Ziyong Li, Yanle Sun, Sixin Zhao, Wei Wang, Aidang Shan. Granular Carbides-Assisted Ultrafine-Ferrite Fabrication in the Pearlitic Steel Without Severe Plastic Deformation and Annealing [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1645-1656. |
[13] | Pei Li, Danhui Hou, En-Hou Han, Rongshi Chen, Zhiwei Shan. Solidification of Mg-Zn-Zr Alloys: Grain Growth Restriction, Dendrite Coherency and Grain Size [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1477-1486. |
[14] | Liang Yang, Jun Li, Defang Tu, Joel C. J. Strickland, Qiaodan Hu, Hongbiao Dong, Jianguo Li. Reduced Annealing Time and Enhanced Magnetocaloric Effect of La(Fe, Al)13 Alloy by La-nonstoichiometry and Si-doping [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1535-1542. |
[15] | Qiyu Liao, Wenxin Hu, Qichi Le, Xingrui Chen, Ke Hu, Chunlong Cheng, Chenglu Hu. Microstructure, Mechanical Properties and Texture Evolution of Mg-Al-Zn-La-Gd-Y Magnesium Alloy by Hot Extrusion and Multi-Pass Rolling [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1359-1368. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||