Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (10): 1583-1590.DOI: 10.1007/s40195-022-01434-2
Huan Li1,2, Shuai Zeng1,2, Yong-Kang Zhou1,2, Hai-Long Li1,2, Hong-Wei Zhang1,2, Hai-Feng Zhang1,2,3, Zheng-Wang Zhu1,2,3()
Received:
2022-04-12
Revised:
2022-05-07
Accepted:
2022-05-16
Online:
2022-07-05
Published:
2022-07-05
Contact:
Zheng-Wang Zhu
About author:
Zheng-Wang Zhu, zwzhu@imr.ac.cnHuan Li, Shuai Zeng, Yong-Kang Zhou, Hai-Long Li, Hong-Wei Zhang, Hai-Feng Zhang, Zheng-Wang Zhu. High Tensile Strength and Superelasticity of Directionally Solidified Ti30Ni30Fe10Hf10Nb20 Eutectic High Entropy Alloy[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1583-1590.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Microstructure of Ti30Ni30Fe10Hf10Nb20 HEAs prepared by TC and DS at growth rates of 1-180 mm/h: a XRD patterns, b cross-section SEM images of TC samples inset with high magnification image, c-e and g, h cross-section SEM images of DS samples at a growth rate of 60 mm/h at different magnifications, f longitudinal-section SEM image of the 60 mm/h DS samples, and i TEM EDS-mapping of the 60 mm/h DS samples
Fig. 2 a-c Longitudinal-section and d-f cross-section SEM images of the DS Ti30Ni30Fe10Hf10Nb20 samples at growth rates of 1 mm/h, 60 mm/h and 180 mm/h, respectively
Fig. 3 Engineering tensile stress-strain curves of the Ti30Ni30Fe10Hf10Nb20 HEAs prepared by TC and DS at growth rates of 1 mm/h, 60 mm/h and 180 mm/h
Alloys | Elastic strain (%) | Elastic limit (MPa) |
---|---|---|
TC | 0.6 | 708 |
1 mm/h | 0.8 | 767 |
60 mm/h | 3.1 | 1409 |
180 mm/h | 1.2 | 881 |
Table 1 Elastic strain and elastic limit in room-temperature tensile
Alloys | Elastic strain (%) | Elastic limit (MPa) |
---|---|---|
TC | 0.6 | 708 |
1 mm/h | 0.8 | 767 |
60 mm/h | 3.1 | 1409 |
180 mm/h | 1.2 | 881 |
Fig. 4 EBSD images, before deformation, of the Ti30Ni30Fe10Hf10Nb20 HEAs prepared by TC and DS at growth rates of 1-180 mm/h: a-c phase images of the 1 mm/h, 60 mm/h and 180 mm/h DS samples respectively, d-f inverse pole figures of the 1 mm/h, 60 mm/h and 180 mm/h DS samples respectively, g-i KAM maps of the 1 mm/h, 60 mm/h and 180 mm/h DS samples respectively
Fig. 5 EBSD images, after deformation, of the Ti30Ni30Fe10Hf10Nb20 HEAs prepared by TC and DS at growth rates of 1-180 mm/h: a-c phase images of the 1 mm/h, 60 mm/h and 180 mm/h DS samples respectively, d-f KAM maps of the 1 mm/h, 60 mm/h and 180 mm/h DS samples, respectively
[1] | J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004) |
[2] | Q.F. He, J.G. Wang, H.A. Chen, Z.Y. Ding, Z.Q. Zhou, L.H. Xiong, J.H. Luan, J.M. Pelletier, J.C. Qiao, Q. Wang, L.L. Fan, Y. Ren, Q.S. Zeng, C.T. Liu, C.W. Pao, D.J. Srolovitz, Y. Yang,Nature 602, 251 (2022) |
[3] | K.J. Lu, A. Chauhan, D. Litvinov, A.S. Tirunilai, J. Freudenberger, A. Kauffmann, M. Heilmaier, J. Aktaa, J. Mater. Sci. Technol. 100, 237 (2022) |
[4] | Y.X. Wan, J.Y. Mo, X. Wang, Z.B. Zhang, B.L. Shen, X.B. Liang, Acta Metall. Sin. -Engl. Lett. 34, 1585 (2021) |
[5] | D. Wang, X. Lu, M.C. Lin, D. Wan, Z.M. Li, J.Y. He, R. Johnsen, J. Mater. Sci. Technol. 98, 118 (2022) |
[6] | O. El-Atwani, N. Li, M. Li, A. Devaraj, J.K.S. Baldwin, M.M. Schneider, D. Sobieraj, J.S. Wróbel, D. Nguyen-Manh, S.A. Maloy, E. Martinez, Sci. Adv. 5, 2002 (2019) |
[7] | Q. Cheng, X.D. Xu, P. Xie, L.L. Han, J.Y. He, X.Q. Li, J. Zhang, Z.T. Li, Y.P. Li, B. Liu, T.G. Nieh, M.W. Chen, J.H. Chen, J. Mater. Sci. Technol. 91, 270 (2021) |
[8] | J. Wang, H.C. Li, H.X. Yang, Y. Zhang, W.Y. Wang, J.S. Li, Acta Metall. Sin. Engl. Lett. 34, 1527 (2021) |
[9] | C. Zhang, X. Wang, M.J. Xu, B.E. MacDonald, R.J. Hong, C.Y. Zhu, X.Y. Dai, K.S. Vecchio, D. Apelian, H. Hahn, J.M. Schoenung, E.J. Lavernia, Appl. Phys. Lett. 119, 161908 (2021) |
[10] | G.L. Ma, Y. Zhao, H.Z. Cui, X.J. Song, M.L. Wang, K. Lee, X.H. Gao, Q. Song, C.M. Wang, Acta Metall. Sin. Engl. Lett. 34, 1087 (2021) |
[11] | B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie,Science 345, 1153 (2014) |
[12] | F. Marques, M. Balcerzak, F. Winkelmann, G. Zepon, M. Felderhoff, Energy Environ. Sci.14, 5191 (2021) |
[13] | G.S. Firstov, T.A. Kosorukova, Y. Koval, V.V. Odnosum, Mater. Today: Proc. 2, S 499 (2015) |
[14] | D. Canadinc, W. Trehern, J. Ma, I. Karaman, F.P. Sun, Z. Chaudhry, Scr. Mater. 158, 83 (2019) |
[15] | S.H. Li, D.Y. Cong, Z. Chen, S.W. Li, C. Song, Y.X. Cao, Z.H. Nie, Y.D. Wang, Mater. Res. Lett. 9, 263 (2021) |
[16] | S.H. Li, D.Y. Cong, X.M. Sun, Y. Zhang, Z. Chen, Z.H. Nie, R.G. Li, F.Q. Li, Y. Ren, Y.D. Wang, Mater. Res. Lett. 7, 482 (2019) |
[17] | Y. Wu, F. Zhang, F. Li, Y. Yang, J. Zhu, H.H. Wu, Y. Zhang, R. Qu, Z. Zhang, Z. Nie, Y. Ren, Y. Wang, X. Liu, H. Wang, Z. Lu, Mater. Horiz. 9, 804 (2022) |
[18] | G.S. Firstov, T.A. Kosorukova, Y. Koval, P.A. Verhovlyuk, Shape Mem. Superelast. 1, 400 (2015) |
[19] | S.J. Hao, L.S. Cui, D.Q. Jiang, X.D. Han, Y. Ren, J. Jiang, Y.N. Liu, Z.Y. Liu, S.C. Mao, Y.D. Wang, Y. Li, X.B. Ren, X.D. Ding, S. Wang, C. Yu, X.B. Shi, M.S. Du, F. Yang, Y.J. Zheng, Z. Zhang, X.D. Li, D.E. Brown, J. Li,Science 339, 1191 (2013) |
[20] | Y.P. Lu, X.Z. Gao, L. Jiang, Z.N. Chen, T.M. Wang, J.C. Jie, H.J. Kang, Y.B. Zhang, S. Guo, H.H. Ruan, Y.H. Zhao, Z.Q. Cao, T.J. Li, Acta Mater. 124, 143 (2017) |
[21] | Y.P. Lu, Y. Dong, H. Jiang, Z.J. Wang, Z.Q. Cao, S. Guo, T.M. Wang, T.J. Li, P.K. Liaw, Scr. Mater. 187, 202 (2020) |
[22] | M.L. Wang, Y.P. Lu, T.M. Wang, C. Zhang, Z.Q. Cao, T.J. Li, P.K. Liaw, Scr. Mater. 204, 114 (2021) |
[23] | K. Kishida, Y. Yamaguchi, K. Tanaka, H. Inui, S. Tokui, K. Ishikawa, K. Aoki,Intermetallics 16, 88 (2008) |
[24] | M.C. Flemings (ed.), Solidification Processing (McGraw-Hill, New York, 1974) |
[25] | N. Saeidi, F. Ashrafizadeh, B. Niroumand, F. Barlat, J. Mater. Eng. Perform. 24, 53 (2014) |
[26] | S.M. Saghaian, H.E. Karaca, H. Tobe, M. Souri, R. Noebe, Y.I. Chumlyakov, Acta Mater. 87, 128 (2015) |
[1] | Xing-Jiang Hua, Ping Hu, Hai-Rui Xing, Jia-Yu Han, Song-Wei Ge, Shi-Lei Li, Chao-Jun He, Kuai-She Wang, Chun-Juan Cui. Development and Property Tuning of Refractory High-Entropy Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1231-1265. |
[2] | Kai Wang, Zhenjiang Wang, Jinling Lu, Zhijun Wang, Wei Wang, Xingqi Luo. Erosion Behavior of NiCoCrFeNb0.45 Eutectic High-Entropy Alloy in Liquid-Solid Two-Phase Flow [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1266-1274. |
[3] | Peng Peng, Shengyuan Li, Weiqi Chen, Yuanli Xu, Xudong Zhang, Zhikun Ma, Jiatai Wang. Phase Selection and Microhardness of Directionally Solidified AlCoCrFeNi2.1 Eutectic High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1281-1290. |
[4] | Hao Gu, Zhide Li, Kaiguang Luo, Laxman Bhatta, Hanqing Xiong, Yun Zhang, Charlie Kong, Hailiang Yu. Enhanced Mechanical Properties of AA5083 Matrix Composite via Introducing Al0.5CoCrFeNi Particles and Cryorolling [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 879-889. |
[5] | Zishu Chai, Kexuan Zhou, Qingfeng Wu, Zhijun Wang, Quan Xu, Junjie Li, Jincheng Wang. Deformation Behaviors of an Additive-Manufactured Ni32Co30Cr10Fe10Al18 Eutectic High Entropy Alloy at Ambient and Elevated Temperatures [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1607-1616. |
[6] | Yao Yan, Wei-Dong Song, Ke-Feng Li, Kang Zhao, Tong-Tong Sun, Kai-Kai Song, Jian-Hong Gong, Li-Na Hu. Microstructural Features and Mechanical Behaviors of Al0.5Cr0.8CoFeNi2.5V0.2 High-Entropy Alloys Fabricated by Selective Laser Melting Technique [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1591-1606. |
[7] | Shaofan Ge, Shifeng Lin, Huameng Fu, Long Zhang, Tieqiang Geng, Zhengwang Zhu, Zhengkun Li, Hong Li, Aimin Wang, Hongwei Zhang, Haifeng Zhang. High-temperature Mechanical Properties and Dynamic Recrystallization Mechanism of in situ Silicide-reinforced MoNbTaTiVSi Refractory High-entropy Alloy Composite [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1617-1630. |
[8] | Fengqi Zhang, Chao Xiang, En-Hou Han, Zijian Zhang. Effect of Nb Content on Microstructure and Mechanical Properties of Mo0.25V0.25Ti1.5Zr0.5Nbx High-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1641-1652. |
[9] | Shenghui Xie, Xiang Liao, Xierong Zeng, Haipeng Yang, Liang He. An Iron-Based High-Entropy Alloy with Highly Efficient Degradation for p-Nitrophenol [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1653-1664. |
[10] | Xuan Huang, Yong Dong, Shaomu Lu, Chuanqiang Li, Zhengrong Zhang. Effects of Homogenized Treatment on Microstructure and Mechanical Properties of AlCoCrFeNi2.2 Near-Eutectic High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1079-1086. |
[11] | Yingying Shen, Qing Jia, Xu Zhang, Ronghua Liu, Yumin Wang, Yuyou Cui, Rui Yang. Tensile Behavior of SiC Fiber-Reinforced γ-TiAl Composites Prepared by Suction Casting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 932-942. |
[12] | Chenliang Chu, Weiping Chen, Zhen Chen, Zhenfei Jiang, Hao Wang, Zhiqiang Fu. Microstructure and Mechanical Behavior of FeNiCoCr and FeNiCoCrMn High-Entropy Alloys Fabricated by Powder Metallurgy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 445-454. |
[13] | Hui Xiao, Yu Liu, Kai Wang, Zhipeng Wang, Te Hu, Touwen Fan, Li Ma, Pingying Tang. Effects of Mn Content on Mechanical Properties of FeCoCrNiMnx (0≤x≤0.3) High-Entropy Alloys: A First-Principles Study [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 455-464. |
[14] | Ibrahim Ondicho, Bernard Alunda, Fredrick Madaraka, Melody Chepkoech. Effect of Bimodal Grain Size Distribution on the Strain Hardening Behavior of a Medium-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 465-475. |
[15] | Hui Jiang, Li Li, Rui Wang, Kaiming Han, Quanwei Wang. Effects of Chromium on the Microstructures and Mechanical Properties of AlCoCrxFeNi2.1 Eutectic High Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(11): 1565-1573. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||