Acta Metallurgica Sinica (English Letters) ›› 2020, Vol. 33 ›› Issue (12): 1681-1688.DOI: 10.1007/s40195-020-01051-x
Previous Articles Next Articles
Jinshan He1, Zhengrong Yu2, Longfei Li2(), Xitao Wang1,3, Qiang Feng2
Received:
2019-12-26
Revised:
2020-01-29
Online:
2020-12-10
Published:
2020-12-11
Contact:
Longfei Li
Jinshan He, Zhengrong Yu, Longfei Li, Xitao Wang, Qiang Feng. Effect of grit blasting and subsequent heat treatment on stress rupture property of a Ni-based single-crystal superalloy SGX3[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1681-1688.
Add to citation manager EndNote|Ris|BibTeX
No | Standard heat treatment | Grit blasting | Vacuum heat treatment |
---|---|---|---|
SH | √ | ||
VH | √ | 1100 °C/200 h | |
GH1 | √ | 0.3 MPa/1 min | 1100 °C/200 h |
GH2 | √ | 0.5 MPa/2 min | 1100 °C/200 h |
Table 1 Specimens with different grit blasting
No | Standard heat treatment | Grit blasting | Vacuum heat treatment |
---|---|---|---|
SH | √ | ||
VH | √ | 1100 °C/200 h | |
GH1 | √ | 0.3 MPa/1 min | 1100 °C/200 h |
GH2 | √ | 0.5 MPa/2 min | 1100 °C/200 h |
Specimen | Thickness of cellular recrystallization μ (μm) | Area of cellular recrystallization (×105 μm2) | Effective loading area (%) | Volume fraction of γ′ (vol.%) |
---|---|---|---|---|
SH | 0±0 | 0 | 100 | 64.0 |
VH | 0±0 | 0 | 100 | 40.6 |
GH1 | 18.4±1.9 | 1.5 | 96.1 | 40.1 |
GH2 | 49.6±4.2 | 4.0 | 89.4 | 40.0 |
Table 2 Statistical analysis of microstructures for different specimens
Specimen | Thickness of cellular recrystallization μ (μm) | Area of cellular recrystallization (×105 μm2) | Effective loading area (%) | Volume fraction of γ′ (vol.%) |
---|---|---|---|---|
SH | 0±0 | 0 | 100 | 64.0 |
VH | 0±0 | 0 | 100 | 40.6 |
GH1 | 18.4±1.9 | 1.5 | 96.1 | 40.1 |
GH2 | 49.6±4.2 | 4.0 | 89.4 | 40.0 |
Fig. 4 Microstructures of longitude sections with 4 mm away from fracture surfaces for different specimens after stress rupture tests: a specimen SH; b specimen VH; c specimen GH1; d specimen GH2
Fig. 5 Microstructures of longitude sections near fracture surfaces for different specimens after stress rupture tests: a specimen SH; b specimen VH; c specimen GH1; d specimen GH2 (the insets are of small magnifications)
Fig. 6 Morphologies of retained cracks and corresponding loading direction inverse pole figure maps for different specimens after stress rupture tests: a specimen VH, b specimen GH2
References | Ni | Cr | Co | W | Mo | Al | Ti | Ta | C | B | Nb | Hf |
---|---|---|---|---|---|---|---|---|---|---|---|---|
[ | Bal | 8.5 | 5 | 9.5 | - | 5.5 | 2.2 | 2.8 | 0.02 | - | - | - |
[ | Bal | 8 | 5 | 5 | 2 | 6 | 2 | 3 | - | - | - | - |
[ | Bal | 8-10 | 9-11 | 11.5-12.5 | - | 4.75-5.25 | 1.75-2.25 | - | 0.12-0.16 | 0.01-0.02 | 0.75-1.25 | 1-2 |
[ | Bal | 8.9 | 10 | 11.7 | - | 5 | 2 | 1 | - | 0.014 | 1 | 1.8 |
[ | Bal | 9 | 10 | 7 | 2 | 5 | 3.5 | 4 | 0.1 | 0.01 | - | - |
Table 3 Chemical composition (wt%) of alloys in Refs.[8, 14, 17, 19, 27]
References | Ni | Cr | Co | W | Mo | Al | Ti | Ta | C | B | Nb | Hf |
---|---|---|---|---|---|---|---|---|---|---|---|---|
[ | Bal | 8.5 | 5 | 9.5 | - | 5.5 | 2.2 | 2.8 | 0.02 | - | - | - |
[ | Bal | 8 | 5 | 5 | 2 | 6 | 2 | 3 | - | - | - | - |
[ | Bal | 8-10 | 9-11 | 11.5-12.5 | - | 4.75-5.25 | 1.75-2.25 | - | 0.12-0.16 | 0.01-0.02 | 0.75-1.25 | 1-2 |
[ | Bal | 8.9 | 10 | 11.7 | - | 5 | 2 | 1 | - | 0.014 | 1 | 1.8 |
[ | Bal | 9 | 10 | 7 | 2 | 5 | 3.5 | 4 | 0.1 | 0.01 | - | - |
References | Alloy | Creep condition | Recrystallization type | Effective loading area (%) | Normalized stress rupture life |
---|---|---|---|---|---|
[ | Directionally solidified | 980 °C/235 MPa | Not indicated | 1 | 1±0.18 |
0.98 | 0.99±0.06 | ||||
0.96 | 0.84 | ||||
0.88 | 0.44 | ||||
0.8 | 0.3 | ||||
[ | Directionally solidified | 955 °C/255 MPa | Equiaxed | 1 | 1 |
0.95 | 0.68 | ||||
[ | Single crystal | 1000 °C/195 MPa | Equiaxed | 1 | 1 |
0.92 | 0.56 | ||||
0.91 | 0.5 | ||||
0.88 | 0.48 | ||||
0.87 | 0.45 | ||||
0.86 | 0.36 | ||||
0.85 | 0.34 | ||||
[ | Single crystal | 950 °C/240 MPa | Equiaxed | 1 | 1 |
0.96 | 0.71 | ||||
0.93 | 0.5 | ||||
0.89 | 0.365 | ||||
[ | Single crystal | 1000 °C/195 MPa | Not indicated | 1 | 1 |
0.92 | 0.5 | ||||
0.876 | 0.474 | ||||
0.851 | 0.34 |
Table 4 Creep information of alloys in Refs.[8, 14, 17, 19, 27]. The normalized stress rupture life is defined as the ratio of the stress rupture life time of a specimen over that of the same alloy without recrystallization at the same creep condition
References | Alloy | Creep condition | Recrystallization type | Effective loading area (%) | Normalized stress rupture life |
---|---|---|---|---|---|
[ | Directionally solidified | 980 °C/235 MPa | Not indicated | 1 | 1±0.18 |
0.98 | 0.99±0.06 | ||||
0.96 | 0.84 | ||||
0.88 | 0.44 | ||||
0.8 | 0.3 | ||||
[ | Directionally solidified | 955 °C/255 MPa | Equiaxed | 1 | 1 |
0.95 | 0.68 | ||||
[ | Single crystal | 1000 °C/195 MPa | Equiaxed | 1 | 1 |
0.92 | 0.56 | ||||
0.91 | 0.5 | ||||
0.88 | 0.48 | ||||
0.87 | 0.45 | ||||
0.86 | 0.36 | ||||
0.85 | 0.34 | ||||
[ | Single crystal | 950 °C/240 MPa | Equiaxed | 1 | 1 |
0.96 | 0.71 | ||||
0.93 | 0.5 | ||||
0.89 | 0.365 | ||||
[ | Single crystal | 1000 °C/195 MPa | Not indicated | 1 | 1 |
0.92 | 0.5 | ||||
0.876 | 0.474 | ||||
0.851 | 0.34 |
[1] | X. Zhang, H. Li, M. Zhan, Z. Zheng, J. Gao, G. Shao, J. Mech. Sci. Technol. 36, 79(2020) |
[2] | H.P. Wang, C.H. Zheng, P.F. Zou, S.J. Yang, L. Hu, B. Wei, J. Mech. Sci. Technol. Technol. 34, 22(2018) |
[3] | B. Hu, Y.L. Pei, S.K. Gong, H.B. Xu, Acta Metall Sin. 55, 1204(2019) |
[4] | A.W. Zhang, S. Zhang, D. Zhang, W.H. Zhang, D.W. Han, F. Qi, Y. Guo Tan, X. Xin, W.R. Sun, Acta Metall. Sin. (Engl. Lett.) 32, 887(2019) |
[5] | X.W. Li, X.G. Liu, Y. Wang, J.S. Dong, L.H. Lou, Acta Metall. Sin. (Engl. Lett.) 32, 651(2019) |
[6] | C.M.F. Rae, R.C. Reed, Acta Mater. 55, 1067(2007) |
[7] |
C. Panwisawas, H. Mathur, J.C. Gebelin, D. Putman, C.M.F. Rae, R.C. Reed, Acta Mater. 61, 51(2013)
DOI URL |
[8] | B. Zhang, X. Lu, D. Liu, C. Tao, Mater. Sci. Eng. A 551, 149 (2012) |
[9] | L.H. Rettberg, T.M. Pollock, Acta Mater. 73, 287(2014) |
[10] | J. Meng, T. Jin, X.F. Sun, Z.Q. Hu, Int. J. Min. Met. Mater. 18, 197(2011) |
[11] | D.C. Cox, B. Roebuck, C.M.F. Rae, R.C. Reed, Mater. Sci Technol. 19, 440(2003) |
[12] | C.Y. Jo, H.M. Kim, Mater. Sci. Technol. 19, 1671(2003) |
[13] |
C.Y. Jo, H.Y. Cho, H.M. Kim, Mater. Sci. Technol. 19, 1665(2003)
DOI URL |
[14] | J. Meng, T. Jin, X. Sun, Z. Hu, Mater. Sci. Eng. A 527, 6119 (2010) |
[15] | Z.X. Shi, S.Z. Liu, X.D. Yue, L.J. Hu, W.P. Yang, X.G. Wang, J.R. Li, J. Iron Steel Res. Int. 24, 1059(2017) |
[16] |
L.C. Zhuo, M. Huang, J.C. Xiong, J.R. Li, J. Zhu, Acta Metall Sin. 28, 72(2015)
DOI URL |
[17] |
B. Zhang, C. Liu, X. Lu, C. Tao, T. Jiang, Rare Met. 29, 413(2010)
DOI URL |
[18] |
J. Zhang, D. Wang, G. Xie, Y.Z. Shen, L.H. Lou, Acta Metall Sin. 55, 1077(2019). (in Chinese)
DOI URL |
[19] | G. Xie, L. Wang, J. Zhang, L.H. Lou, Metall. Mater. Trans. A 39, 206 (2008) |
[20] | D. Duhl, in Superalloys II High Temperature Materials for Aerospace and Industrial Power ed. by C.T. Sims, N.S. Stoloff, W.C. Hagel (Wiley-Interscience, 1987) p. 189 |
[21] | V. Seetharaman, A.D. Cetel, Superalloys 2004,207(2004) |
[22] | B. Cassenti, A. Staroselsky, Mater. Sci. Eng. A 508, 183 (2009) |
[23] | W. Walston, J. Schaeffer, W. Murphy, Superalloys 1996,9(1996) |
[24] | O. Lavigne, C. Ramusat, S. Drawin, P. Caron, D. Boivin, J. Pouchou, Superalloys 2004 667(2004) |
[25] |
T. Murakumo, T. Kobayashi, Y. Koizumi, H. Harada, Acta Mater. 52, 3737(2004)
DOI URL |
[26] | M. Acharya, G. Fuchs, Mater. Sci. Eng. A 381, 143 (2009) |
[27] | Y. Zheng, Z. Ruan, S. Wang, Acta Metall Sin. 31, 325(1995). (in Chinese) |
[1] | Ce Zheng, Shuai-Feng Chen, Rui-Xue Wang, Shi-Hong Zhang, Ming Cheng. Effect of Hydrostatic Pressure on LPSO Kinking and Microstructure Evolution of Mg-11Gd-4Y-2Zn-0.5Zr Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 248-264. |
[2] | Xiaochao Liu, Yufeng Sun, Tomoya Nagira, Kohsaku Ushioda, Hidetoshi Fujii. Effect of Stacking Fault Energy on the Grain Structure Evolution of FCC Metals During Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 1001-1012. |
[3] | Yang Shao, Rong-Chang Zeng, Shuo-Qi Li, Lan-Yue Cui, Yu-Hong Zou, Shao-Kang Guan, Yu-Feng Zheng. Advance in Antibacterial Magnesium Alloys and Surface Coatings on Magnesium Alloys: A Review [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 615-629. |
[4] | Kwang-Su Kim, Lin-Xiu Du, Hyo-sung Choe, Tae-Hyong Lee, Gyong-Chol Lee. Influence of Vanadium Content on Hot Deformation Behavior of Low-Carbon Boron Microalloyed Steel [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 705-715. |
[5] | Jian Xun, Gaoyong Lin, Huiqun Liu, Siyu Zhao, Jing Chen, Xun Dai, Ruiqian Zhang. Texture Evolution and Dynamic Recrystallization of Zr-1Sn-0.3Nb-0.3Fe-0.1Cr Alloy During Hot Rolling [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 215-224. |
[6] | A. Shah S., D. Wu, Chen R. S., Song G. S.. Temperature Effects on the Microstructures of Mg-Gd-Y Alloy Processed by Multi-direction Impact Forging [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(2): 243-251. |
[7] | Song-Wei Wang, Hong-Wu Song, Yan Chen, Shi-Hong Zhang, Hai-Hong Li. Evolution of Annealing Twins and Recrystallization Texture in Thin-Walled Copper Tube During Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(12): 1618-1626. |
[8] | Hongduo Wang, Kuaishe Wang, Wen Wang, Yongxin Lu, Pai Peng, Peng Han, Ke Qiao, Zhihao Liu, Lei Wang. Microstructure and Mechanical Properties of Low-Carbon Q235 Steel Welded Using Friction Stir Welding [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(11): 1556-1570. |
[9] | Haoqiang Zhang, Xixi Niu, Zhiliang Pei, Nanlin Shi, Jun Gong, Chao Sun. Effects of Cr and Al Contents on the Preparation of SiC Fiber-Reinforced NiCrAl Alloy Matrix Composite [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(10): 1416-1422. |
[10] | Hong-Xuan Zhang, Shuai-Feng Chen, Ming Cheng, Ce Zheng, Shi-Hong Zhang. Modeling the Dynamic Recrystallization of Mg-11Gd-4Y-2Zn-0.4Zr Alloy Considering Non-uniform Deformation and LPSO Kinking During Hot Compression [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1122-1134. |
[11] | Le Zhang, Wei Wang, M. Babar Shahzad, Yi-Yin Shan, Ke Yang. Hot Deformation Behavior of an Ultra-High-Strength Fe-Ni-Co-Based Maraging Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1161-1172. |
[12] | Yi-Tao Wang, Jian-Bo Li, Yun-Chang Xin, Xian-Hua Chen, Muhammad Rashad, Bin Liu, Yong Liu. Hot Deformation Behavior and Hardness of a CoCrFeMnNi High-Entropy Alloy with High Content of Carbon [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(8): 932-943. |
[13] | Kun-Kun Deng, Cui-Ju Wang, Kai-Bo Nie, Xiao-Jun Wang. Recent Research on the Deformation Behavior of Particle Reinforced Magnesium Matrix Composite: A Review [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(4): 413-525. |
[14] | Wilasinee Kingkam, Cheng-Zhi Zhao, Hong Li, He-Xin Zhang, Zhi-Ming Li. Hot Deformation and Corrosion Resistance of High-Strength Low-Alloy Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(4): 495-505. |
[15] | Yu-Cheng Zhang, Zhen-Sheng Meng, Yang Meng, Xin-Hua Ju, Zhong-Hang Jiang, Ze-Jun Ma. Effect of Nb Content on the Hot Deformation Behavior of S460ML Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(4): 526-534. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||