Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (2): 251-265.DOI: 10.1007/s40195-022-01472-w
Previous Articles Next Articles
Xihai Li1,2, Hong Yan2,3(), Rongshi Chen2(
)
Received:
2022-07-28
Revised:
2022-09-14
Accepted:
2022-09-15
Online:
2023-02-10
Published:
2022-10-27
Contact:
Rongshi Chen, rschen@imr.ac.cn;Hong Yan, yanhong5871@163.com
Xihai Li, Hong Yan, Rongshi Chen. Tailoring the Texture and Mechanical Anisotropy of Multi-cross Rolled Mg-Zn-Gd Alloy by Annealing[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 251-265.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Schematic diagram of a multi-cross rolling, b the microstructure, texture and tensile mechanical properties characterization of rolled and annealed sheet, c macroscopic morphology of rolled sheet
Fig. 3 EBSD and quasi-in situ EBSD IPF maps of multi-cross rolled Mg-Zn-Gd alloy annealed at a 250 °C, b 350 °C, c 400 °C for 30 min, and annealed at 300 °C for d 5 min, e 15 min, f 30 min, g 60 min
Fig. 4 Macro-texture of the multi-cross rolled and annealed Mg-Zn-Gd alloy measured by XRD: a multi-cross rolled, and annealed (0002) pole figures at b 250 °C, c 300 °C, d 350 °C, e 400 °C for 30 min, and at 300 °C for f 5 min, g 15 min, h 60 min
Fig. 5 Micro-texture of multi-cross rolled and annealed Mg-Zn-Gd alloy obtained from EBSD: a schematic diagram of basal texture component, R-texture component and T-texture component; and (0002) pole figures annealed at b 250 °C, c 350 °C, d 400 °C for 30 min, and at 300 °C for e 5 min, f 15 min, g 30 min, h 60 min
Fig. 6 EBSD IPF subset maps and corresponding (0002) pole figure maps of Mg-Zn-Gd alloy annealed at a-c 250 °C, d-f 350 °C and g-i 400 °C of a, d, g basal texture component, b, e, h R-texture component, and c, f, i T-texture component
Fig. 7 Statistics of different texture components for a area fraction, b grain number fraction, c average grain size, d angle as a function of annealing temperature
Fig. 8 Quasi-in situ EBSD IPF subset maps and corresponding (0002) pole figure maps of recrystallized grains in Mg-Zn-Gd alloy annealed at 300 °C for a-c 5 min, d-f 15 min, g-i 30 min and j-l 60 min of a, d, g, j basal texture component, b, e, h, k R-texture component, and c, f, i, l T-texture component
Fig. 9 Statistics of recrystallized grains in different texture components for a area fraction, b grain number, c grain number fraction, d average grain size, e angle as a function of annealing time
Fig. 10 Tensile mechanical properties of rolled and annealed Mg-Zn-Gd alloy at different temperatures for 30 min: a engineering stress-strain curves along RD, b engineering stress-strain curves along TD, c YSRD/YSTD, d yield strength, e ultimate tensile strength, f elongation to failure
Alloy | Method | Direction | YS (MPa) | UTS (MPa) | El. (%) | YSRD/YSTD |
---|---|---|---|---|---|---|
This study | Hot rolled | RD | 226 | 281 | 6.0 | 1.04 |
TD | 217 | 282 | 15.2 | |||
This study | Annealed at 250 °C | RD | 170 | 250 | 22.0 | 0.97 |
TD | 175 | 252 | 26.3 | |||
This study | Annealed at 300 °C | RD | 155 | 243 | 29.0 | 1.05 |
TD | 148 | 242 | 32.2 | |||
This study | Annealed at 350 °C | RD | 140 | 231 | 22.8 | 1.14 |
TD | 123 | 232 | 33.5 | |||
This study | Annealed at 400 °C | RD | 120 | 225 | 25.3 | 1.29 |
TD | 93 | 220 | 25.0 | |||
Mg-0.68Zn-0.78Ce-0.18Zr [ | UR | RD | 131 | 234 | 16.86 | 1.14 |
TD | 115 | 222 | 12.61 | |||
Mg-0.89Zn-0.69La-0.22Zr [ | UR | RD | 123 | 241 | 22.75 | 1.28 |
TD | 96 | 243 | 25.34 | |||
Mg-0.61Zn-0.58Nd-0.27Zr [ | UR | RD | 111 | 243 | 27.58 | 1.32 |
TD | 84 | 238 | 28.61 | |||
Mg-0.73Zn-0.73Gd-0.24Zr [ | UR | RD | 88 | 229 | 29.33 | 1.33 |
TD | 66 | 233 | 32.19 | |||
Mg-0.84Zn-0.59Ce-0.21La-0.057Nd-0.33Zr [ | UR | RD | 131 | 233 | 18.95 | 1.32 |
TD | 99 | 247 | 24.86 | |||
Mg-2.0Zn-0.3Gd [ | UR | RD | 155 | 245 | 40 | 1.72 |
TD | 90 | 225 | 33 | |||
Mg-2.0Zn-0.8Gd [ | UR | RD | 182 | 255 | 33 | 1.42 |
TD | 128 | 248 | 43 | |||
Mg-1.98Zn-1.93Gd [ | CR | RD | 92 | 258 | 24 | 1.05 |
TD | 88 | 253 | 26 | |||
Mg-1.98Zn-1.93Gd [ | CR + UR | RD | 123 | 263 | 24 | 1.54 |
TD | 80 | 267 | 34 | |||
Mg-1.98Zn-1.93Gd [ | UR | RD | 112 | 260 | 27 | 1.37 |
TD | 82 | 266 | 30 | |||
Mg-1.98Zn-1.93Gd [ | UR + CR | RD | 134 | 261 | 23 | 1.65 |
TD | 81 | 254 | 26 | |||
Mg-0.8Zn-0.3Gd-0.3Ca [ | UR | RD | 159 | 236 | 40 | 1.25 |
TD | 127 | 227 | 41 |
Table 1 Tensile properties of Mg-Zn-RE alloys with different chemical compositions and processing methods and parameters (YS, yield strength; UTS, ultimate tensile stress; El., elongation to failure)
Alloy | Method | Direction | YS (MPa) | UTS (MPa) | El. (%) | YSRD/YSTD |
---|---|---|---|---|---|---|
This study | Hot rolled | RD | 226 | 281 | 6.0 | 1.04 |
TD | 217 | 282 | 15.2 | |||
This study | Annealed at 250 °C | RD | 170 | 250 | 22.0 | 0.97 |
TD | 175 | 252 | 26.3 | |||
This study | Annealed at 300 °C | RD | 155 | 243 | 29.0 | 1.05 |
TD | 148 | 242 | 32.2 | |||
This study | Annealed at 350 °C | RD | 140 | 231 | 22.8 | 1.14 |
TD | 123 | 232 | 33.5 | |||
This study | Annealed at 400 °C | RD | 120 | 225 | 25.3 | 1.29 |
TD | 93 | 220 | 25.0 | |||
Mg-0.68Zn-0.78Ce-0.18Zr [ | UR | RD | 131 | 234 | 16.86 | 1.14 |
TD | 115 | 222 | 12.61 | |||
Mg-0.89Zn-0.69La-0.22Zr [ | UR | RD | 123 | 241 | 22.75 | 1.28 |
TD | 96 | 243 | 25.34 | |||
Mg-0.61Zn-0.58Nd-0.27Zr [ | UR | RD | 111 | 243 | 27.58 | 1.32 |
TD | 84 | 238 | 28.61 | |||
Mg-0.73Zn-0.73Gd-0.24Zr [ | UR | RD | 88 | 229 | 29.33 | 1.33 |
TD | 66 | 233 | 32.19 | |||
Mg-0.84Zn-0.59Ce-0.21La-0.057Nd-0.33Zr [ | UR | RD | 131 | 233 | 18.95 | 1.32 |
TD | 99 | 247 | 24.86 | |||
Mg-2.0Zn-0.3Gd [ | UR | RD | 155 | 245 | 40 | 1.72 |
TD | 90 | 225 | 33 | |||
Mg-2.0Zn-0.8Gd [ | UR | RD | 182 | 255 | 33 | 1.42 |
TD | 128 | 248 | 43 | |||
Mg-1.98Zn-1.93Gd [ | CR | RD | 92 | 258 | 24 | 1.05 |
TD | 88 | 253 | 26 | |||
Mg-1.98Zn-1.93Gd [ | CR + UR | RD | 123 | 263 | 24 | 1.54 |
TD | 80 | 267 | 34 | |||
Mg-1.98Zn-1.93Gd [ | UR | RD | 112 | 260 | 27 | 1.37 |
TD | 82 | 266 | 30 | |||
Mg-1.98Zn-1.93Gd [ | UR + CR | RD | 134 | 261 | 23 | 1.65 |
TD | 81 | 254 | 26 | |||
Mg-0.8Zn-0.3Gd-0.3Ca [ | UR | RD | 159 | 236 | 40 | 1.25 |
TD | 127 | 227 | 41 |
Fig. 12 Statistics of different texture components for a-c R-texture component, d-f T-texture component; a, d area fraction, b, e grain number fraction, c, f average grain size at 250 °C and 400 °C
Fig. 13 Schmid factor of basal slip for Mg-Zn-Gd alloy annealed at a-h 250 °C and i-p 400 °C along a-d, i-l RD and e-h, m-p TD for a, e, i, m full texture component, b, f, g, n basal texture component, c, g, k, o R-texture component, and d, h, l, p T-texture component
Annealing temperatures (°C) | Direction | Different texture components | ||
---|---|---|---|---|
Basal texture | R-texture | T-texture | ||
250 | RD | 0 | 49.58 | 7.44 |
TD | 0 | 8.73 | 57.89 | |
400 | RD | 0 | 57.93 | 10.71 |
TD | 0 | 13.23 | 70.04 |
Table 2 Fraction of soft orientation (SF ≥ 0.4) grains for basal slip in different texture components
Annealing temperatures (°C) | Direction | Different texture components | ||
---|---|---|---|---|
Basal texture | R-texture | T-texture | ||
250 | RD | 0 | 49.58 | 7.44 |
TD | 0 | 8.73 | 57.89 | |
400 | RD | 0 | 57.93 | 10.71 |
TD | 0 | 13.23 | 70.04 |
[1] |
S.R. Agnew, J.F. Nie, Scr. Mater. 63, 671 (2010)
DOI URL |
[2] |
S.V.S. Prasad, S.B. Prasad, K. Verma, R.K. Mishra, V. Kumar, S. Singh, J. Magnes. Alloy. 10, 1 (2022)
DOI URL |
[3] |
D. Wang, S. Liu, R. Wu, S. Zhang, Y. Wang, H. Wu, J. Zhang, L. Hou, J. Alloy. Compd. 881, 160663 (2021)
DOI URL |
[4] |
F.S. Pan, M.B. Yang, X.H. Chen, J. Mater. Sci. Technol. 32, 1211 (2016)
DOI URL |
[5] | B. Ding, Z. Cai, Z. Ahsan, Y. Ma, S. Zhang, G. Song, C. Yuan, W. Yang, C. Wen, Acta Metall. Sin. -Engl. Lett. 34, 291 (2020) |
[6] |
X.C. Ma, S.Y. Jin, R.Z. Wu, J.X. Wang, G.X. Wang, B. Krit, S. Betsofen, Trans. Nonferrous Met. Soc. China 31, 3228 (2021)
DOI URL |
[7] |
Z.Z. Jin, M. Zha, S.Q. Wang, S.C. Wang, C. Wang, H.L. Jia, H.Y. Wang, J. Magn. Alloy. 10, 1191 (2022)
DOI URL |
[8] |
S. Jin, X. Ma, R. Wu, T. Li, J. Wang, B.L. Krit, L. Hou, J. Zhang, G. Wang, Int. J. Miner. Metall. Mater. 29, 1453 (2022)
DOI URL |
[9] |
L.L.C. Catorceno, H.F.G. de Abreu, A.F. Padilha, J. Magnes. Alloy. 6, 121 (2018)
DOI URL |
[10] |
J. Wu, L. Jin, J. Dong, F. Wang, S. Dong, J. Mater. Sci. Technol. 42, 175 (2020)
DOI URL |
[11] |
B. Shi, C. Yang, Y. Peng, F. Zhang, F. Pan, J. Magnes. Alloy. 10, 1476 (2022)
DOI URL |
[12] |
P. Liu, H. Jiang, Z. Cai, Q. Kang, Y. Zhang, J. Magnes. Alloy. 4, 188 (2016)
DOI URL |
[13] |
T. Al-Samman, X. Li, Mater. Sci. Eng. A 528, 3809 (2011)
DOI URL |
[14] |
H. Yan, S.W. Xu, R.S. Chen, S. Kamado, T. Honma, E.H. Han, J. Alloy. Compd. 566, 98 (2013)
DOI URL |
[15] | J. Yang, J. Peng, M. Li, E.A. Nyberg, F.S. Pan, Acta Metall. Sin. -Engl. Lett. 30, 53 (2016) |
[16] | F. Wang, J. Li, J. Liu, D. Lv, P. Mao, Z. Liu, Acta Metall. Sin. -Engl. Lett. 27, 609 (2014) |
[17] |
J. Bohlen, J. Wendt, M. Nienaber, K.U. Kainer, L. Stutz, D. Letzig, Mater. Charact. 101, 144 (2015)
DOI URL |
[18] |
H. Yan, X.H. Shao, H.P. Li, R.S. Chen, H.Z. Cui, E.H. Han, Scr. Mater. 207, 114257 (2022)
DOI URL |
[19] |
Y. Zhang, H. Jiang, Q. Kang, Y. Wang, Y. Yang, S. Tian, J. Magnes. Alloy. 8, 769 (2020)
DOI URL |
[20] |
J. Xu, B. Jiang, Y. Kang, J. Zhao, W. Zhang, K. Zheng, F. Pan, J. Mater. Sci. Technol. 113, 48 (2022)
DOI URL |
[21] |
D. Song, T. Zhou, J. Tu, L. Shi, B. Song, L. Hu, M. Yang, Q. Chen, L. Lu, J. Mater. Process. Tech. 259, 380 (2018)
DOI URL |
[22] | Z. Liu, X. Zhao, K. Chen, S. Wang, X. Ren, Z. Zhang, Y. Xue, Acta Metall. Sin. -Engl. Lett. 35, 839 (2021) |
[23] |
Z. Hu, Z. Chen, J. Xiong, T. Chen, J. Shao, C. Liu, Mater. Sci. Eng. A 662, 519 (2016)
DOI URL |
[24] |
Y. Zhang, H. Jiang, S. Wang, Y. Wang, S. Tian, H. Lin, G. Zhang, Y. Yang, Z. Xu, Mater. Sci. Eng. A 804, 140566 (2021)
DOI URL |
[25] |
J. Xiong, Z. Chen, L. Yi, S. Hu, T. Chen, C. Liu, Mater. Sci. Eng. A 590, 60 (2014)
DOI URL |
[26] |
S. Pan, Y. Xin, G. Huang, Q. Li, F. Guo, Q. Liu, Mater. Sci. Eng. A 653, 93 (2016)
DOI URL |
[27] |
P.D. Huo, F. Li, Y. Wang, R.Z. Wu, R.H. Gao, A.X. Zhang, Mater. Des. 219, 110696 (2022)
DOI URL |
[28] | Q. Wang, H. Zhai, H. Xia, L. Liu, J. He, D. Xia, H. Yang, B. Jiang, Acta Metall. Sin. -Engl. Lett. 35, 1793 (2022) |
[29] |
B.Q. Shi, L.Y. Zhao, X.L. Shang, B.H. Nie, D.C. Chen, C.Q. Li, Y.Q. Cheng, J. Mater. Sci. Technol. 111, 211 (2022)
DOI |
[30] |
Q. Wang, B. Jiang, A. Tang, J. Fu, Z. Jiang, H. Sheng, D. Zhang, G. Huang, F. Pan, J. Mater. Sci. Technol. 43, 104 (2020)
DOI URL |
[31] |
D. Guan, W.M. Rainforth, J. Gao, J. Sharp, B. Wynne, L. Ma, Acta Mater. 135, 14 (2017)
DOI URL |
[32] |
M.G. Jiang, C. Xu, H. Yan, T. Nakata, Z.W. Chen, C.S. Lao, R.S. Chen, S. Kamado, E.H. Han, J. Magnes. Alloy. 9, 1797 (2021)
DOI URL |
[33] |
L.Y. Zhao, H. Yan, R.S. Chen, E.H. Han, J. Magnes. Alloy. 9, 818 (2021)
DOI URL |
[34] |
L.Y. Sheng, B.N. Du, Z.Y. Hu, Y.X. Qiao, Z.P. Xiao, B.J. Wang, D.K. Xu, Y.F. Zheng, T.F. Xi, J. Magnes. Alloy. 8, 601 (2020)
DOI URL |
[35] |
X.H. Li, H. Yan, R.S. Chen, J. Alloy. Compd. 889, 161683 (2021)
DOI URL |
[36] |
S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, J.M. Cabrera, J. Alloy. Compd. 509, 3806 (2011)
DOI URL |
[37] |
J. Luo, H. Yan, R.S. Chen, E.H. Han, Mater. Sci. Eng. A 614, 88 (2014)
DOI URL |
[38] |
H. Yan, S.W. Xu, R.S. Chen, S. Kamado, T. Honma, E.H. Han, Scr. Mater. 64, 141 (2011)
DOI URL |
[39] |
D. Guan, W.M. Rainforth, J. Gao, L. Ma, B. Wynne, Acta Mater. 145, 399 (2018)
DOI URL |
[40] |
R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, A.D. Rollett, Mater. Sci. Eng. A 238, 219 (1997)
DOI URL |
[41] |
L. Mackenzie, M. Pekguleryuz, Scr. Mater. 59, 665 (2008)
DOI URL |
[42] |
Z. Deng, X. Li, S. Wang, X. Li, D. Chen, X. Xiao, Mater. Charact. 190, 112046 (2022)
DOI URL |
[43] |
J. Su, A.S.H. Kabir, M. Sanjari, S. Yue, Mater. Sci. Eng. A 674, 343 (2016)
DOI URL |
[44] |
H. Yan, R.S. Chen, E.H. Han, Mater. Sci. Eng. A 527, 3317 (2010)
DOI URL |
[45] |
J. Luo, W.W. Hu, Q.Q. Jin, H. Yan, R.S. Chen, Scr. Mater. 127, 146 (2017)
DOI URL |
[46] |
M.T. Pérez-Prado, J.A. del Valle, J.M. Contreras, O.A. Ruano, Scr. Mater. 50, 661 (2004)
DOI URL |
[47] |
H. Yan, R. Chen, N. Zheng, J. Luo, S. Kamado, E. Han, J. Magnes. Alloy. 1, 23 (2013)
DOI URL |
[48] |
S. Pan, X. Huang, Y. Xin, G. Huang, Q. Li, C. Tan, Q. Liu, Mater. Sci. Eng. A 731, 288 (2018)
DOI URL |
[49] |
Y. Wang, H. Choo, Acta Mater. 81, 83 (2014)
DOI URL |
[50] | L. Hu, M. Li, Q. Chen, T. Zhou, L. Shi, M. Yang, Acta Metall. Sin. -Engl. Lett. 35, 223 (2021) |
[51] |
M. Wang, X.Y. Xu, H.Y. Wang, L.H. He, M.X. Huang, Acta Mater. 201, 102 (2020)
DOI URL |
[1] | H. Zhang, H. L. Hao, G. Y. Fu, B. S. Liu, R. G. Li, R. Z. Wu, H. C. Pan. Microstructure and Mechanical Property of Hot-Rolled Mg-2Ag Alloy Prepared with Multi-pass Rolling [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 335-342. |
[2] | Tianjiao Li, Jiang Zheng, Lihong Xia, Haoge Shou, Yongfa Zhang, Rong Shi, Liuyong He, Wenkai Li. Tailoring Texture to Highly Strengthen AZ31 Alloy Plate in the Thickness Direction via Pre-tension and Rolling-Annealing [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 266-280. |
[3] | Zhen Jiang, Dongfeng Shi, Jin Zhang, Tianming Li, Liwei Lu. Effect of Zn and Y Additions on Grain Boundary Movement of Mg Binary Alloys During Static Recrystallization [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(2): 179-191. |
[4] | Yongqiao Li, Lifei Wang, Xiaohuan Pan, Qiang Zhang, Guangsheng Huang, Bin Xing, Weili Cheng, Hongxia Wang, Kwang Seon Shin. Effect of Pre-stretch Strain at High Temperatures on the Formability of AZ31 Magnesium Alloy Sheets [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 48-60. |
[5] | Chunxiao Li, Hong Yan, Rongshi Chen. Microstructure and Texture Evolution of Mg-14Gd-0.5Zr Alloy during Rolling and Annealing under Different Temperatures [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 61-76. |
[6] | Fei Peng, Yunbo Xu, Xingli Gu. Control of Austenite Characteristics and Ferrite Formation Mechanism by Multiple-Cyclic Annealing in Quenching and Partitioning Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1143-1156. |
[7] | Xicai Luo, Haolin Liu, Limei Kang, Jielin Lin, Datong Zhang, Dongyang Li, Daolun Chen. Achieving Superior Superplasticity in a Mg-6Al-Zn Plate via Multi-pass Submerged Friction Stir Processing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 757-762. |
[8] | Zohreh Yazdani, Mohammad Reza Toroghinejad, Hossein Edris. Effects of Annealing on the Fabrication of Al-TiAl3 Nanocomposites Before and After Accumulative Roll Bonding and Evaluation of Strengthening Mechanisms [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 636-650. |
[9] | Li Hu, Mingao Li, Qiang Chen, Tao Zhou, Laixin Shi, Mingbo Yang. Dependence of Microstructure Evolution and Mechanical Properties on Loading Direction for AZ31 Magnesium Alloy Sheet with Non-basal Texture During In-Plane Uniaxial Tension [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 223-234. |
[10] | Dandan Liang, Xiaodi Liu, Yinghao Zhou, Yu Wei, Xianshun Wei, Gang Xu, Jun Shen. Effects of Annealing Below Glass Transition Temperature on the Wettability and Corrosion Performance of Fe-based Amorphous Coatings [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 243-253. |
[11] | Cunyun Hu, Hefei Huang, Zhenbo Zhu, Awen Liu, Yan Li. Effect of Post-irradiation Annealing on Microstructure Evolution and Hardening in GH3535 Alloy Irradiated by Au Ions [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1903-1911. |
[12] | Qinghang Wang, Haowei Zhai, Hongbo Xia, Lintao Liu, Junjie He, Dabiao Xia, Hong Yang, Bin Jiang. Relating Initial Texture to Deformation Behavior During Cold Rolling and Static Recrystallization Upon Subsequent Annealing of an Extruded WE43 Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1793-1811. |
[13] | Shuai Zhang, Bao-Chang Liu, Mei-Xuan Li, Hui-Yuan Wang, Yin-Long Ma. Effect of Microstructures and Textures on Different Surfaces on Corrosion Behavior of an as-Extruded ATZ411 Magnesium Alloy Sheet [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1029-1041. |
[14] | Bing Li, Ji Wu, Bugang Teng. Influences of the Texture Characteristic and Interdendritic LPSO Phase Distribution on the Tensile Properties of Mg-Gd-Y-Zn-Zr Sheets Through Hot Rolling [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1051-1064. |
[15] | B. Mehdi, R. Badji, V. Ji, B. Alili, D. Bradai, W. Bedjaoui, F. Deschaux-Beaume, F. Brisset. Unveiling the Residual Stresses, Local Micromechanical Properties and Crystallographic Texture in a Ti-6Al-4V Weld Joint [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 997-1006. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||