Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (8): 1051-1064.DOI: 10.1007/s40195-021-01189-2
Previous Articles Next Articles
Bing Li1, Ji Wu1, Bugang Teng1,2()
Received:
2021-01-24
Revised:
2021-01-24
Accepted:
2021-01-24
Online:
2021-01-24
Published:
2021-08-10
Contact:
Bugang Teng
About author:
Bugang Teng, bgteng@hit.edu.cnBing Li, Ji Wu, Bugang Teng. Influences of the Texture Characteristic and Interdendritic LPSO Phase Distribution on the Tensile Properties of Mg-Gd-Y-Zn-Zr Sheets Through Hot Rolling[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1051-1064.
Add to citation manager EndNote|Ris|BibTeX
Pass | Rolling reduction (mm) | Thickness change (%) | Temperature (°C) |
---|---|---|---|
1 | 25-17.3 | 30.8 | 450 |
2 | 17.3-12 | 30.6 | 450 |
3 | 12-8.5 | 29.1 | 450 |
4 | 8.5-5.8 | 31.7 | 450 |
5 | 5.8-4.1 | 29.3 | 450 |
6 | |||
R40 | 4.1-2.44 | 40.5 | 450 |
R50 | 4.1-2.08 | 49.3 | 450 |
R60 | 4.1-1.59 | 61.2 | 450 |
Table 1 Thickness variation during the multi-pass hot rolling (the resulted sheets with FRR of 40%, 50% and 60% were denoted as R40, R50 and R60, respectively)
Pass | Rolling reduction (mm) | Thickness change (%) | Temperature (°C) |
---|---|---|---|
1 | 25-17.3 | 30.8 | 450 |
2 | 17.3-12 | 30.6 | 450 |
3 | 12-8.5 | 29.1 | 450 |
4 | 8.5-5.8 | 31.7 | 450 |
5 | 5.8-4.1 | 29.3 | 450 |
6 | |||
R40 | 4.1-2.44 | 40.5 | 450 |
R50 | 4.1-2.08 | 49.3 | 450 |
R60 | 4.1-1.59 | 61.2 | 450 |
Samples | TYS (MPa) | UTS (MPa) | FE (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
RD | 45° | TD | RD | 45° | TD | RD | 45° | TD | |
R40 | 340 ± 3 | 276 ± 4 | 260 ± 2 | 421 ± 4 | 379 ± 4 | 345 ± 3 | 7.89 ± 0.2 | 8.51 ± 0.3 | 5.14 ± 0.2 |
R50 | 367 ± 2 | 321 ± 3 | 291 ± 3 | 446 ± 5 | 412 ± 4 | 388 ± 5 | 10.30 ± 0.4 | 12.12 ± 0.4 | 8.92 ± 0.3 |
R60 | 375 ± 3 | 316 ± 3 | 285 ± 3 | 435 ± 2 | 417 ± 2 | 387 ± 3 | 6.02 ± 0.3 | 11.34 ± 0.4 | 5.16 ± 0.2 |
Table 2 Summarized tensile properties of the resulted sheets with different FRRs
Samples | TYS (MPa) | UTS (MPa) | FE (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
RD | 45° | TD | RD | 45° | TD | RD | 45° | TD | |
R40 | 340 ± 3 | 276 ± 4 | 260 ± 2 | 421 ± 4 | 379 ± 4 | 345 ± 3 | 7.89 ± 0.2 | 8.51 ± 0.3 | 5.14 ± 0.2 |
R50 | 367 ± 2 | 321 ± 3 | 291 ± 3 | 446 ± 5 | 412 ± 4 | 388 ± 5 | 10.30 ± 0.4 | 12.12 ± 0.4 | 8.92 ± 0.3 |
R60 | 375 ± 3 | 316 ± 3 | 285 ± 3 | 435 ± 2 | 417 ± 2 | 387 ± 3 | 6.02 ± 0.3 | 11.34 ± 0.4 | 5.16 ± 0.2 |
Fig. 7 Basal \(\left\langle a \right\rangle\) SF distribution maps along RD for resulted sheets: a R40, b R50, c R60 and distribution diagram for resulted sheets: d R40, e R50, f R60
Fig. 8 Basal \(\left\langle a \right\rangle\) SF distribution maps along 45° for resulted sheets: a R40, b R50, c R60 and distribution diagram for resulted sheets: d R40, e R50, f R60
Fig. 9 Basal \(\left\langle a \right\rangle\) SF maps along TD for resulted sheets: a R40, b R50, c R60 and distribution diagram for resulted sheets: d R40, e R50, f R60
Fig. 10 a Variation of TYS and fracture elongation, b correlation of TYS and basal \(\left\langle a \right\rangle\) slip orientation factor (M), c distribution of fracture elongation versus basal \(\left\langle a \right\rangle\) slip orientation factor (M)
Dislocation slip system | R40 | R50 | R60 | ||||||
---|---|---|---|---|---|---|---|---|---|
RD | 45° | TD | RD | 45° | TD | RD | 45° | TD | |
Basal \(\left\langle a \right\rangle\) | 0.193/5.18 | 0.294/3.40 | 0.281/3.56 | 0.223/4.48 | 0.233/4.29 | 0.233/4.29 | 0.217/4.61 | 0.251/3.98 | 0.267/3.75 |
Prismatic \(\left\langle a \right\rangle\) | 0.410 | 0.360 | 0.334 | 0.409 | 0.393 | 0.388 | 0.410 | 0.408 | 0.386 |
Pyramid \(\left\langle {c + a} \right\rangle\) | 0.417 | 0.400 | 0.425 | 0.416 | 0.411 | 0.423 | 0.414 | 0.422 | 0.420 |
Table 3 Average SF/orientation factor (M) of different dislocation slips for resulted sheets
Dislocation slip system | R40 | R50 | R60 | ||||||
---|---|---|---|---|---|---|---|---|---|
RD | 45° | TD | RD | 45° | TD | RD | 45° | TD | |
Basal \(\left\langle a \right\rangle\) | 0.193/5.18 | 0.294/3.40 | 0.281/3.56 | 0.223/4.48 | 0.233/4.29 | 0.233/4.29 | 0.217/4.61 | 0.251/3.98 | 0.267/3.75 |
Prismatic \(\left\langle a \right\rangle\) | 0.410 | 0.360 | 0.334 | 0.409 | 0.393 | 0.388 | 0.410 | 0.408 | 0.386 |
Pyramid \(\left\langle {c + a} \right\rangle\) | 0.417 | 0.400 | 0.425 | 0.416 | 0.411 | 0.423 | 0.414 | 0.422 | 0.420 |
Dislocation slip system | R40 | R50 | R60 | ||||||
---|---|---|---|---|---|---|---|---|---|
RD | 45° | TD | RD | 45° | TD | RD | 45° | TD | |
Basal \(\left\langle a \right\rangle\) | 25.90 | 17.01 | 17.79 | 22.42 | 21.46 | 21.46 | 23.04 | 19.92 | 18.72 |
Prismatic \(\left\langle a \right\rangle\) | 58.54 | 66.67 | 71.86 | 58.68 | 61.07 | 61.86 | 58.54 | 58.82 | 62.18 |
Pyramid \(\left\langle {c + a} \right\rangle\) | 47.96 | 50 | 47.06 | 48.08 | 48.66 | 47.28 | 48.31 | 47.39 | 47.61 |
Table 4 Calculated shear stress σ0 of different dislocation slips for resulted sheets
Dislocation slip system | R40 | R50 | R60 | ||||||
---|---|---|---|---|---|---|---|---|---|
RD | 45° | TD | RD | 45° | TD | RD | 45° | TD | |
Basal \(\left\langle a \right\rangle\) | 25.90 | 17.01 | 17.79 | 22.42 | 21.46 | 21.46 | 23.04 | 19.92 | 18.72 |
Prismatic \(\left\langle a \right\rangle\) | 58.54 | 66.67 | 71.86 | 58.68 | 61.07 | 61.86 | 58.54 | 58.82 | 62.18 |
Pyramid \(\left\langle {c + a} \right\rangle\) | 47.96 | 50 | 47.06 | 48.08 | 48.66 | 47.28 | 48.31 | 47.39 | 47.61 |
Fig. 11 Fracture morphologies during tension along different directions of the resulted sheets: a R40-RD, b R40-45°, c R40-TD, d R50-RD, e R50-45°, f R50-TD, g R60-RD, h R60-45°, i R60-TD
Fig. 12 SEM images of the fracture side of the resulted sheets: a R50 along RD, b R50 along 45°, c R50 along TD, d R60 along RD, e R60 along 45°, f R60 along TD
[1] | Y. Chino, K. Sassa, A. Kamiya, M. Mabuchi, Mater. Sci. Eng. A 473, 195(2008) |
[2] |
R.G. Li, F. Asghar, J.H. Zhang, G.Y. Fu, Q. Liu, B.T. Guo, Y.M. Yu, S.G. Guo, Y. Su, X.J. Chen, L. Zhong, Acta Metall. Sin. (Engl. Lett.) 32, 245(2019)
DOI URL |
[3] |
Y.M. Zhu, A.J. Morton, J.F. Nie, Acta Mater. 58, 2936(2010)
DOI URL |
[4] |
M. Li, X. Wang, Q.Y. Feng, J. Wang, Z. Xu, P.H. Zhang, Mater. Charact. 125, 123(2017)
DOI URL |
[5] |
C. Xu, J.P. Pan, T. Nakata, X.G. Qiao, Y.Q. Chi, M.Y. Zheng, S. Kamado, Mater. Charact. 124, 40(2017)
DOI URL |
[6] |
J.H. He, L. Jin, F.H. Wang, S. Dong, J. Dong, J. Magnes. Alloy. 5, 423(2017)
DOI URL |
[7] | C. Xu, M.Y. Zheng, S.W. Xu, K. Wu, E.D. Wang, G.H. Fan, S. Kamado, Mater. Sci. Eng. A 643, 137(2015) |
[8] | M. Tane, S. Suzuki, M. Yamasaki, Y. Kawamura, K. Hagihara, H. Kimizuka, Mater. Sci. Eng. A 710, 227(2018) |
[9] | Y.H. Kang, X.X. Wang, N. Zhang, H. Yan, R.S. Chen, Mater. Sci. Eng. A 689, 435(2017) |
[10] |
D. Wang, H.J. Wu, R.Z. Wu, Y. Wang, T. Nodir, J. Magnes. Alloy, J. Magnes. Alloy. 8, 793(2020)
DOI URL |
[11] |
G. Garces, D.G. Morris, M.A. Munoz-Morris, P. Perez, D. Tolnai, C. Mendis, A. Stark, H.K. Lim, S. Kim, N. Shell, P. Adeva, Acta Mater. 94, 78(2015)
DOI URL |
[12] |
T. Itoi, T. Seimiya, Y. Kawamura, M. Hirohashi, Scr. Mater. 51, 107(2004)
DOI URL |
[13] |
Z.M. Li, D.Q. Wan, Y. Huang, S.T. Ye, Y.L. Hu, J. Magnes. Alloy. 5, 217(2017)
DOI URL |
[14] | B. Li, B.G. Teng, G.X. Chen, Mater. Sci. Eng. A 744, 396(2018) |
[15] |
H. Liu, J. Ju, X.W. Yang, J.L. Yan, D. Song, J.H. Jiang, A.B. Ma, J. Alloys Compd 704, 509(2017)
DOI URL |
[16] |
T. Chen, Z.Y. Chen, J.B. Shao, R.K. Wang, L.H. Mao, C.M. Liu, Mater. Des. 152, 1(2018)
DOI URL |
[17] |
J.J. Gao, J. Fu, N. Zhang, Y.A. Chen, J. Alloys Compd 768, 1029(2018)
DOI URL |
[18] | X. Wu, F.S. Pan, R.J. Cheng, S.Q. Luo, Mater. Sci. Eng. A 726, 64(2018) |
[19] |
L. Mei, X.P. Chen, G.J. Huang, Q. Liu, J. Alloys Compd. 777, 259(2019)
DOI URL |
[20] | J.B. Shao, Z.Y. Chen, T. Chen, R.K. Wang, Y.L. Liu, C.M. Liu, Mater. Sci. Eng. A 731, 479(2018) |
[21] | B. Li, B.G. Teng, E.D. Wang, Mater. Sci. Eng. A 765, 138317(2019) |
[22] | P. Xu, J.M. Yu, Z.M. Zhang, Materials 12, 2773(2019) |
[23] | Z.M. Zhang, Z.M. Yan, Y. Du, G.S. Zhang, J.X. Zhu, L.Y. Ren, Y.D. Wang, Materials 11, 2282(2018) |
[24] |
X.J. Zhou, C.M. Liu, Y.H. Gao, S.N. Jiang, W.H. Liu, L.W. Lu, J. Alloys Compd, J. Alloys Compd. 724, 528(2017)
DOI URL |
[25] |
Z. Zhang, P. Cizek, M. Barnett, Scr. Mater. 67, 1015(2012)
DOI URL |
[26] |
M. Matsuda, S. Ando, M. Nishida, Mater. Trans. 46, 361(2005)
DOI URL |
[27] | S. Ando, H. Tonda, Mater. Sci. Forum 350, 43(2000) |
[28] | R. Wang, J. Dong, L.K. Fan, P. Zhang, W.J. Ding, T. Nonferr, Met. Soc. 18, 189(2010) |
[29] |
X.W. Li, F.Y. Zheng, Y.J. Wu, L.M. Peng, Y. Zhang, D.L. Lin, W.J. Ding, Mater. Lett. 113, 206(2013)
DOI URL |
[30] | C. Xu, M.Y. Zheng, S.W. Xu, K. Wu, E.D. Wang, S. Kamado, G.J. Wang, X.Y. Lv, Mater. Sci. Eng. A 559, 844(2013) |
[31] | W.K. Wang, W.Z. Chen, W.C. Zhang, G.R. Cui, E.D. Wang, Mater. Sci. Eng. A 712, 608(2018) |
[32] | K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H.Y. Yasuda, Y. Umakoshi, Acta Mater. 58, 6286(2010) |
[33] |
Y. Wang, H. Choo, Acta Mater. 81, 83(2014)
DOI URL |
[34] | R. Armstrong, I. Codd, R.M. Douthwaite, N.J. Petch, Philos. Mag. 7, 45(1962) |
[35] |
E. Oñorbe, G. Garcés, P. Pérez, S. Cabezas, M. Klaus, C. Genzel, E. Frutos, P. Adeva, Scr. Mater. 65, 719(2011)
DOI URL |
[36] | A. Kelly, G.J. Davies, Metall. Rev. 10, 1(1965) |
[37] |
E. Oñorbe, G. Garcés, P. Pérez, P. Adeva, J. Mater. Sci. 47, 1085(2012)
DOI URL |
[38] | K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H.Y. Yasuda, Y. Umakoshi, T. Umakoshi, Nonferr. Met. Soc. 20, 1259(2010) |
[39] | Y.F. Wang, F. Zhang, Y.T. Wang, Y.B. Duan, K.J. Wang, W.J. Zhang, J. Hu, Mater. Sci. Eng. A 745, 149(2019) |
[40] | X. Liu, B.W. Zhua, C. Xie, J. Zhang, C.P. Tang, Y.Q. Chen, Mater. Sci. Eng. A 722, 98(2018) |
[41] | Y.N. Wang, C. Xie, Q.H. Fang, X. Liu, M.H. Zhang, Y.W. Liu, L.X. Li, Int. J. Solids. Struct102-103, 230(2016) |
[42] |
B.W. Zhu, X. Liu, C. Xie, J. Su, P.C. Guo, C.P. Tang, W.H. Liu, J. Mater. Sci. Technol. 50, 59(2020)
DOI URL |
[43] | T. Chen, Z.Y. Chen, J.B. Shao, R.K. Wang, L.H. Mao, C.M. Liu, Mater. Sci. Eng. A 750, 31(2019) |
[1] | Fu-Yue Wang, Xiang-Jie Wang, Wei Sun, Fang Yu, Jian-Zhong Cui. Low Frequency Electromagnetic Casting of 2195 Aluminum-Lithium Alloy and Its Effects on Microstructure and Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(3): 338-350. |
[2] | Yang Bai, Wei-Li Cheng, Shi-Chao Ma, Jun Zhang, Chen Guo, Yao Zhang. Influence of Initial Microstructure on the Strengthening Effect of Extruded Mg-8Sn-4Zn-2Al Alloys [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(5): 487-495. |
[3] | Jin-Long Fu, Hong-Jun Jiang, Kai-Kun Wang. Influence of Processing Parameters on Microstructural Evolution and Tensile Properties for 7075 Al Alloy Prepared by an ECAP-Based SIMA Process [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(4): 337-350. |
[4] | Hai-Tao Li, Yong-Chun Liang, Wan-Li Zhong, Xue-Zhi Qin, Guo ?Jian-Ting, Lan-Zhang Zhou, Wei-Li Ren. Tensile Properties and Deformation Behavior of Several Cast Ni-Based Superalloys Fabricated by Different Solidification Ways [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(3): 280-288. |
[5] | Choongdo Lee, Taeil So, Kwangseon Shin. Effect of Gas Bubbling Filtration Treatment on Microporosity Variation in A356 Aluminium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(7): 638-646. |
[6] | B.Y. Yu*, C.L. Bao, H.W. Song, Z. Liu , H.P. Yu. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AZ91D EXTRUDED TUBE [J]. Acta Metallurgica Sinica (English Letters), 2006, 19(3): 203-208 . |
[7] | P.L.Mao. MICROSTRUCTURE AND TENSILE PROPERTY OF AN AS-CAST DUPLEX STAINLESS STEEL [J]. Acta Metallurgica Sinica (English Letters), 2001, 14(4): 285-290 . |
[8] | X.Q. Yu and Y.S. Sun (Department of Materials Science and Engineering, Southeast University, Nanjing 210096, China). EFFECT OF ELONGATED GRAIN STRUCTURE ON THE MECHANICAL PROPERTIES OF AN Fe_3Al-BASED ALLOY [J]. Acta Metallurgica Sinica (English Letters), 1997, 10(4): 358-362. |
[9] | ZHANG Zhonghua;SUN Yangshan;GUO Jun(Department of Materials Science and Engineering, Southeast University, Nanjing 210096,China). TENSILE PROPERTIES AND CREEP RESISTANCE OF Fe_3Al-BASED ALLOYS CONTAINING NIOBIUM [J]. Acta Metallurgica Sinica (English Letters), 1996, 9(2): 135-139. |
[10] | CUI Chengsong;FAN Hongbo;SHEN Jun;JIANG Zuling;LI Qingchun(Department of Metallic Materials and Technology,Harbin Institute of Technology,Harbin 150001,China) Manuscript received 26 May 1995. MICROSTRUCTURE AND TENSILE PROPERTIES OF RAPIDLY SOLIDIFIED Al-3.8Li-0.8Mg-0.4Cu-0.13Zr ALLOY PREPARED BY SPRAY DEPOSITION [J]. Acta Metallurgica Sinica (English Letters), 1996, 9(1): 37-43. |
[11] | KEIZO HASHIMOTO(Advanced Technologies Research Laboratories Nippon Steel Corp.1618 Ida Nakahara-ku Kawasaki 211 JAPAN). TiAl ALLOYS FOR INDUSTRIAL USE [J]. Acta Metallurgica Sinica (English Letters), 1995, 8(z1): 509-518. |
[12] | JIN Man;JIANG Zhonghao;NAN Shenghui;HU Jiandong;LIAN jianshe(Jilin University of Technology,Changchun,China)(Manuscript received 8 February 1995)Correspondent:LI Geping,(Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110015,China). TEMPERING RESPONSE OF A DEFORMED LOW CARBON DUAL PHASE STRUCTURE [J]. Acta Metallurgica Sinica (English Letters), 1995, 8(2): 79-83. |
[13] | ZHOU Yigang YU Hanqing ZENG Weidong Northwestern Polytechnical University,Xi'an,ChinaTANG Jialin China South Aviation Motive Power and Machinery Company,Zhuzhou,China professor,Department of Materials Science and Engineering,Northwestern Polytechnical University,Xi'an 710072,China. EFFECT OF β-FLECKS ON MECHANICAL PROPERTIES OF Ti-10V-2Fe-3Al ALLOY [J]. Acta Metallurgica Sinica (English Letters), 1993, 6(3): 197-201. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||