Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (11): 1903-1911.DOI: 10.1007/s40195-022-01415-5
Previous Articles Next Articles
Cunyun Hu1,2, Hefei Huang2,3(), Zhenbo Zhu2,3, Awen Liu2,3, Yan Li1,2,3(
)
Received:
2022-02-17
Revised:
2022-03-04
Accepted:
2022-03-17
Online:
2022-11-10
Published:
2022-05-19
Contact:
Hefei Huang, huanghefei@sinap.ac.cn; Yan Li, liyan@sinap.ac.cn
Cunyun Hu, Hefei Huang, Zhenbo Zhu, Awen Liu, Yan Li. Effect of Post-irradiation Annealing on Microstructure Evolution and Hardening in GH3535 Alloy Irradiated by Au Ions[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1903-1911.
Add to citation manager EndNote|Ris|BibTeX
Ni | Mo | Cr | Fe | Mn | Si | Al, Cu, C |
---|---|---|---|---|---|---|
Bal | 16.50 | 6.96 | 4.20 | 0.71 | 0.46 | < 0.1 |
Table 1 Alloy composition of the GH3535 alloy (wt%)
Ni | Mo | Cr | Fe | Mn | Si | Al, Cu, C |
---|---|---|---|---|---|---|
Bal | 16.50 | 6.96 | 4.20 | 0.71 | 0.46 | < 0.1 |
Fig. 1 Irradiation damage regions of the displacement per atom (dpa) and Au3+ concentration profiles produced by 6 MeV Au3+ with dose of 6.42 × 1014 ions/cm2
Samples | Irradiation dose (ion/cm2) | Annealed temperature (℃) |
---|---|---|
Unirr | 0 | 0 |
Irr | 6.42 × 1014 | RT |
Irr. + An. 200 ℃ | 6.42 × 1014 | 200 |
Irr. + An. 350 ℃ | 6.42 × 1014 | 350 |
Irr. + An. 500 ℃ | 6.42 × 1014 | 500 |
Irr. + An. 650 ℃ | 6.42 × 1014 | 650 |
Irr. + An. 750 ℃ | 6.42 × 1014 | 750 |
Irr. + An. 850 ℃ | 6.42 × 1014 | 850 |
Table 2 Specific parameters of the annealing experiment
Samples | Irradiation dose (ion/cm2) | Annealed temperature (℃) |
---|---|---|
Unirr | 0 | 0 |
Irr | 6.42 × 1014 | RT |
Irr. + An. 200 ℃ | 6.42 × 1014 | 200 |
Irr. + An. 350 ℃ | 6.42 × 1014 | 350 |
Irr. + An. 500 ℃ | 6.42 × 1014 | 500 |
Irr. + An. 650 ℃ | 6.42 × 1014 | 650 |
Irr. + An. 750 ℃ | 6.42 × 1014 | 750 |
Irr. + An. 850 ℃ | 6.42 × 1014 | 850 |
Fig. 4 Enlarged BF TEM images and corresponding DF TEM images at their peak damage regions showing the characteristics of dislocation loops: a sample before annealing; b-e samples after annealing at 200, 350, 500, 650 °C
Fig. 7 a Size distribution of dislocation loops at peak damage regions in the irradiated samples before and after annealing. b Mean size and number density of dislocation loops at the peak damage regions in the irradiated samples before and after annealing
Sample | H0 (GPa) | ΔH0 (GPa) |
---|---|---|
Unirr | 3.02 ± 0.15 | |
Unan | 5.11 ± 0.13 | 2.09 ± 0.02 |
Irr. + An. 200 °C | 4.89 ± 0.13 | 1.87 ± 0.03 |
Irr. + An. 350 °C | 4.92 ± 0.23 | 1.90 ± 0.08 |
Irr. + An. 500 °C | 4.58 ± 0.22 | 1.56 ± 0.07 |
Irr. + An. 650 °C | 4.22 ± 0.22 | 1.20 ± 0.07 |
Irr. + An. 750 °C | 5.69 ± 0.20 | 2.67 ± 0.05 |
Irr. + An. 850 °C | 4.32 ± 0.14 | 1.30 ± 0.02 |
Table 3 Nanohardness (H0) and its increment (ΔH0) for the investigated samples
Sample | H0 (GPa) | ΔH0 (GPa) |
---|---|---|
Unirr | 3.02 ± 0.15 | |
Unan | 5.11 ± 0.13 | 2.09 ± 0.02 |
Irr. + An. 200 °C | 4.89 ± 0.13 | 1.87 ± 0.03 |
Irr. + An. 350 °C | 4.92 ± 0.23 | 1.90 ± 0.08 |
Irr. + An. 500 °C | 4.58 ± 0.22 | 1.56 ± 0.07 |
Irr. + An. 650 °C | 4.22 ± 0.22 | 1.20 ± 0.07 |
Irr. + An. 750 °C | 5.69 ± 0.20 | 2.67 ± 0.05 |
Irr. + An. 850 °C | 4.32 ± 0.14 | 1.30 ± 0.02 |
Sample | M | b (nm) | $\mu$(GPa) | ɑ | Number density (× 1023 m-3) | Mean size (nm) | σ (GPa) |
---|---|---|---|---|---|---|---|
Irr. + Unan | 3.06 | 0.254 | 83.20 | 0.33 | 1.62 | 3.69 | 0.52 |
Irr. + An. 200 °C | 1.30 | 3.60 | 0.46 | ||||
Irr. + An. 350 °C | 7.89 | 4.21 | 0.39 | ||||
Irr. + An. 500 °C | 4.05 | 4.02 | 0.27 | ||||
Irr. + An. 650 °C | 0.13 | 6.21 | 0.19 |
Table 4 Parameters related to the dislocation loops and calculated yield stress
Sample | M | b (nm) | $\mu$(GPa) | ɑ | Number density (× 1023 m-3) | Mean size (nm) | σ (GPa) |
---|---|---|---|---|---|---|---|
Irr. + Unan | 3.06 | 0.254 | 83.20 | 0.33 | 1.62 | 3.69 | 0.52 |
Irr. + An. 200 °C | 1.30 | 3.60 | 0.46 | ||||
Irr. + An. 350 °C | 7.89 | 4.21 | 0.39 | ||||
Irr. + An. 500 °C | 4.05 | 4.02 | 0.27 | ||||
Irr. + An. 650 °C | 0.13 | 6.21 | 0.19 |
[1] |
J. Serp, M. Allibert, O. Benes, S. Delpech, O. Feynberg, V. Ghetta, D. Heuer, D. Holcomb, V. Ignatiev, J.L. Kloosterman, L. Luzzi, E. Merle-Lucotte, J. Uhlíř, R. Yoshioka, D. Zhimin, Prog. Nucl. Energy 77, 308 (2014)
DOI URL |
[2] |
H.X. Xu, J. Lin, Y.J. Zhong, Z.Y. Zhu, Y. Chen, J.D. Liu, B.J. Ye, Nucl. Sci. Technol. 30, 74 (2019)
DOI URL |
[3] |
D. LeBlanc, Nucl. Eng. Des. 240, 1644 (2010)
DOI URL |
[4] |
S.J. Zinkle, P.J. Maziasz, R.E. Stoller, J. Nucl. Mater. 206, 266 (1993)
DOI URL |
[5] |
W. Zhong, T.A. Saleh, L. Tan, J. Nucl. Mater. 552, 153001 (2021)
DOI URL |
[6] |
J. Gao, H.F. Huang, J.Z. Liu, J.R. Zeng, R.B. Xie, Y. Li, Scr. Mater. 158, 121 (2019)
DOI URL |
[7] |
J. Gao, H.F. Huang, X. Liu, C.B. Wang, J.F. Stubbins, Y. Li, Scr. Mater. 147, 93 (2018)
DOI URL |
[8] |
Z.B. Zhu, H.F. Huang, G.H. Lei, Y.P. Wu, A.W. Liu, Z.Y. Zhu, Corros. Sci. 185, 109434 (2021)
DOI URL |
[9] | M. Liu, Y.F. Yan, Z.B. Zhu, L.F. Ye, R.D. Liu, H.F. Huang, Nucl. Sci. Technol. 21, 121 (2021) |
[10] |
Z.B. Zhu, H.F. Huang, J.Z. Liu, J. Gao, Z.Y. Zhu, J. Nucl. Mater. 525, 32 (2019)
DOI URL |
[11] |
K. Fukuya, K. Fujii, H. Nishioka, Y.J. Kitsunai, J. Nucl. Sci. Technol. 43, 159 (2006)
DOI URL |
[12] |
J.Z. Liu, H.F. Huang, R.D. Liu, Z.B. Zhu, Q.T. Lei, A.W. Liu, Y. Li, J. Nucl. Mater. 537, 152184 (2020)
DOI URL |
[13] |
J.Z. Liu, H.F. Huang, A.W. Liu, Y. Li, J. Nucl. Mater. 548, 152855 (2021)
DOI URL |
[14] |
H.F. Huang, D.H. Li, J.J. Li, R.D. Liu, G.H. Lei, S.X. He, Q. Huang, L. Yan, Mater. Trans. 55, 1243 (2014)
DOI URL |
[15] |
H.F. Huang, J. Gao, B. Radiguet, R.D. Liu, J.J. Li, G.H. Lei, Q. Huang, M. Liu, R. Xie, J. Nucl. Mater. 499, 431 (2018)
DOI URL |
[16] |
H.F. Huang, X.L. Zhou, C.W. Li, J. Gao, T. Wei, G.H. Lei, J.J. Li, L.F. Ye, Q. Huang, Z.Y. Zhu, J. Nucl. Mater. 497, 108 (2017)
DOI URL |
[17] |
H.J. Xu, Z.M. Dai, X.Z. Cai, Nucl. Phys. News 24, 24 (2014)
DOI URL |
[18] | W. Ren, G. Muralidharan, D.F. Wilson, D.E. Holcomb, in ASME Pressure Vessels and Piping Conference, Baltimore, 725 (2011) |
[19] |
J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Meth. B 268, 1818 (2010)
DOI URL |
[20] |
Z.B. Zhu, H.F. Huang, A.W. Liu, Z.Y. Zhu, Mat. Sci. Eng. A 832,142501 (2022)
DOI URL |
[21] |
C. Xu, W.Y. Chen, X. Zhang, Y.Q. Wu, M.M. Li, Y. Yang, J. Nucl. Mater. 507, 188 (2018)
DOI URL |
[22] |
J.Z. Liu, H.F. Huang, J. Gao, Z.B. Zhu, Y. Li, J. Nucl. Mater. 517, 328 (2019)
DOI URL |
[23] |
B. Burton, Mater. Sci. Technol. 8, 602 (1992)
DOI URL |
[24] |
R. Kasada, Y. Takayama, K. Yabuuchi, A. Kimura, Fusion. Eng. Des. 86, 2658 (2011)
DOI URL |
[25] |
A. Prasitthipayong, S.J. Vachhani, S.J. Tumey, A.M. Minor, P. Hosemann, Acta Mater. 144, 896 (2018)
DOI URL |
[26] |
W.D. Nix, H.J. Gao, J. Mech. Phys. Solids. 46, 411 (1998)
DOI URL |
[27] |
X. Liu, R. Wang, A. Ren, J. Jiang, C.L. Xu, P. Huang, W.J. Qian, Y.C. Wu, C.H. Zhang, J. Nucl. Mater. 444, 1 (2014)
DOI URL |
[28] |
K. Yabuuchi, Y. Kuribayashi, S. Nogami, R. Kasada, A. Hasegawa, J. Nucl. Mater. 446, 142 (2014)
DOI URL |
[29] |
R. Saha, W.D. Nix, Acta Mater. 50, 23 (2002)
DOI URL |
[30] |
Z.B. Zhu, H.F. Huang, J.Z. Liu, L.F. Ye, Z.Y. Zhu, Materials 13,31 (2020)
DOI URL |
[31] | H.L. Yan, Z.M. Zhang, J.Q. Wang, B.O. Okonkwo, E.H. Han, Acta Metall. Sin. -Engl. Lett. 34, 9 (2021) |
[32] |
W. Van Renterghem, A.A. Mazouzi, S. Van Dyck, J. Nucl. Mater. 413, 95 (2011)
DOI URL |
[33] |
Z. Jiao, J. Hesterberg, G.S. Was, J. Nucl. Mater. 500, 220 (2018)
DOI URL |
[34] |
L. Jiang, W.Y. Ling, R. Hu, R.D. Liu, X.X. Ye, Z.J. Li, X.T. Zhou, Sci. Rep. 8, 8158 (2018)
DOI PMID |
[35] |
Z. Jiao, G.S. Was, Acta Mater. 59, 1220 (2011)
DOI URL |
[36] |
S.H. Chang, J. Alloy. Compd. 486, 716 (2009)
DOI URL |
[37] |
M.S. Chen, G.Q. Wang, H.B. Li, Y.C. Lin, Z.H. Zou, Y.Y. Ma, D.G. He, W.D. Zeng, Appl. Phys. A-Mater. 125, 447 (2019)
DOI URL |
[38] | S.J. Zinkle, Y. Matsukawa, J. Nucl. Mater. 329, 88 (2004) |
[39] |
G.E. Lucas, J. Nucl. Mater. 206, 287 (1993)
DOI URL |
[40] |
Z.B. Zhu, H.F. Huang, J.Z. Liu, Z.Y. Zhu, J. Nucl. Mater. 541, 152419 (2020)
DOI URL |
[1] | Hui Liu, Shiling Min, Menglei Jiang, Fuzhong Chu, Ying Li, Zhuoer Chen, Kai Zhang, Juan Hou, Aijun Huang. Helium Bubble Growth in He+ Ions Implanted 304L Stainless Steel Processed by Laser Powder Bed Fusion During Post-Irradiation Annealing at 600 °C [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1509-1518. |
[2] | Fei Qiang, Wen Wang, Ke Qiao, Pai Peng, Ting Zhang, Xiao-Hu Guan, Jun Cai, Qiang Meng, Hua-Xia Zhao, Kuai-She Wang. Microstructure and Mechanical Properties in Friction Stir Welded Thick Al-Zn-Mg-Cu Alloy Plate [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1329-1342. |
[3] | Fei Peng, Yunbo Xu, Xingli Gu. Control of Austenite Characteristics and Ferrite Formation Mechanism by Multiple-Cyclic Annealing in Quenching and Partitioning Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1143-1156. |
[4] | Wenbin Tian, Dong Wu, Yiyi Li, Shanping Lu. Precipitation Behavior and Mechanical Properties of a 16Cr-25Ni Superaustenitic Stainless Steel Weld Metal During Post-weld Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 577-590. |
[5] | Zohreh Yazdani, Mohammad Reza Toroghinejad, Hossein Edris. Effects of Annealing on the Fabrication of Al-TiAl3 Nanocomposites Before and After Accumulative Roll Bonding and Evaluation of Strengthening Mechanisms [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 636-650. |
[6] | Dandan Liang, Xiaodi Liu, Yinghao Zhou, Yu Wei, Xianshun Wei, Gang Xu, Jun Shen. Effects of Annealing Below Glass Transition Temperature on the Wettability and Corrosion Performance of Fe-based Amorphous Coatings [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 243-253. |
[7] | Sharafadeen Kunle Kolawole, Ling Ren, Muhammad Ali Siddiqui, Ihsan Ullah, Hai Wang, Shuyuan Zhang, Ji Zhang, Ke Yang. Optimized Mechanical Properties, Corrosion Resistance and Bactericidal Ability of Ti-15Zr-xCu Biomedical Alloys During Aging Treatment [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 304-316. |
[8] | Shi-Yong Li, Ruo-Han Shen, Yu-Tao He, Cui-Lan Wu, Jiang-Hua Chen. Quantitative Electron Tomography for Accurate Measurement of Precipitates Microstructure Parameters in Al-Cu-Li Alloys [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1882-1894. |
[9] | Qinghang Wang, Haowei Zhai, Hongbo Xia, Lintao Liu, Junjie He, Dabiao Xia, Hong Yang, Bin Jiang. Relating Initial Texture to Deformation Behavior During Cold Rolling and Static Recrystallization Upon Subsequent Annealing of an Extruded WE43 Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(11): 1793-1811. |
[10] | Xin-Tong Lian, Long Chen, Zeng-Wei Fan, Teng-Shi Liu, De-Xiang Xu, Han Dong. Effects of Modified Inclusions and Precipitates Alloyed by Rare Earth Element on Corrosion and Impact Properties in Low Alloy Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(10): 1719-1730. |
[11] | H.R. Lin, Y. Z. Tian, S.J. Sun, Z.F. Zhang. Microstructural Evolution and Mechanical Properties of Laminated CuAl Composites Processed by Accumulative Roll-Bonding and Annealing [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 925-931. |
[12] | Ying Han, Jiaqi Sun, Jiapeng Sun, Guoqing Zu, Weiwei Zhu, Xu Ran. High-Temperature Creep Behavior and Microstructural Evolution of a Cu-Nb Co-Alloyed Ferritic Heat-Resistant Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 789-801. |
[13] | Sabry S. Youssef, Xiaodong Zheng, Yingjie Ma, Sensen Huang, Min Qi, Jianke Qiu, Ruixue Zhang, Peitao Hua, Shijian Zheng, Jiafeng Lei, Rui Yang. Characterization of α2 Precipitates in Ti-6Al and Ti-8Al Binary Alloys: A Comparative Investigation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 710-718. |
[14] | Sihan Chen, Tian Liang, Yangtao Zhou, Weiwei Xing, Chengwu Zheng, Yingche Ma, JinMing Wu, Guobin Li, Kui Liu. Phase Characterization and Formation Behavior in 6 wt% Si High-silicon Austenitic Stainless Steel during Isothermal Aging [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 649-656. |
[15] | Ping Deng, En-Hou Han, Qunjia Peng, Chen Sun. Corrosion Behavior and Mechanism of Irradiated 304 Nuclear Grade Stainless Steel in High-Temperature Water [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(2): 174-186. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||