Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (9): 1509-1518.DOI: 10.1007/s40195-022-01391-w
Previous Articles Next Articles
Hui Liu1, Shiling Min1, Menglei Jiang1, Fuzhong Chu1, Ying Li1, Zhuoer Chen2, Kai Zhang1,3, Juan Hou1,4(), Aijun Huang3
Received:
2021-10-09
Revised:
2021-12-03
Accepted:
2021-12-24
Online:
2022-02-16
Published:
2022-02-16
Contact:
Juan Hou
About author:
Juan Hou, houjuanlife@yahoo.comHui Liu, Shiling Min, Menglei Jiang, Fuzhong Chu, Ying Li, Zhuoer Chen, Kai Zhang, Juan Hou, Aijun Huang. Helium Bubble Growth in He+ Ions Implanted 304L Stainless Steel Processed by Laser Powder Bed Fusion During Post-Irradiation Annealing at 600 °C[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1509-1518.
Add to citation manager EndNote|Ris|BibTeX
Element | C | N | Si | Mn | P | S | Cu | Cr | Ni | Mo | Co | O |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Feedstock powder | < 0.005 | 0.023 | 0.033 | 0.013 | 0.027 | < 0.003 | < 0.005 | 19.14 | 9.41 | 0.90 | 0.01 | 0.044 |
As-built | 0.014 | 0.013 | 0.065 | 0.054 | 0.027 | 0.003 | 0.032 | 19.07 | 9.62 | 0.83 | 0.016 | 0.031 |
Table 1 Chemical composition (wt%) of 304L feedstock powder, and as-built sample
Element | C | N | Si | Mn | P | S | Cu | Cr | Ni | Mo | Co | O |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Feedstock powder | < 0.005 | 0.023 | 0.033 | 0.013 | 0.027 | < 0.003 | < 0.005 | 19.14 | 9.41 | 0.90 | 0.01 | 0.044 |
As-built | 0.014 | 0.013 | 0.065 | 0.054 | 0.027 | 0.003 | 0.032 | 19.07 | 9.62 | 0.83 | 0.016 | 0.031 |
Fig. 1 Damage dose (red line) and He+ ion implantation profile (black line) calculated by SRIM after irradiated by 350 keV He+ ion to 5 × 1016 ion/cm2 in the LPBF 304L stainless steel
Identifiers | Sample conditions |
---|---|
S1 | As-built, implanted |
S2 | As-built, implanted, PIA at 600 °C for 1 h |
S3 | Solution-annealed, implanted |
S4 | Solution-annealed, implanted, PIA at 600 °C for 1 h |
Table 2 Sample identifiers of the as-irradiated and post-irradiation annealed LPBF processed 304L
Identifiers | Sample conditions |
---|---|
S1 | As-built, implanted |
S2 | As-built, implanted, PIA at 600 °C for 1 h |
S3 | Solution-annealed, implanted |
S4 | Solution-annealed, implanted, PIA at 600 °C for 1 h |
Fig. 2 Microstructural observations of a-c the as-built sample and d-f the solution-annealed sample. a, d EBSD maps taken in the XY plane perpendicular to the build direction. b, e TEM images of the cellular sub-grain boundaries and grain boundaries. e, f TEM images of nano-sized oxide particles
Fig. 3 TEM images of the a as-built sample and b solution-annealed sample of LPBF 304L stainless steel after He+ ion implantation in - 500 nm under-focus condition
Fig. 4 TEM images of the a as-built sample and b solution-annealed sample of LPBF 304L stainless steel after He+ ion implantation and PIA at 600 °C for 1 h in - 500 nm under-focus condition
Fig. 5 Number density and size of helium bubbles in four samples of comparison S1, S2, S3 and S4, the conditions of the samples are specified in Table 2
Fig. 6 TEM images showing the nano-sized oxide inclusions dispersed in the a, b as-built and c, d solution-annealed LPBF 304L samples after He+ ion implantation in - 500 nm under-focus condition. The average diameters of the oxide particles in the as-built and solution-annealed samples were 15 nm and 80 nm, respectively
Fig. 7 TEM images showing the dislocation structures in the a as-built and b solution-annealed 304L samples after He+ ion implantation in - 500 nm under-focus condition. Weak-beam dark-field micrographs are obtained in the zone axis close to [011] and for beam g = (11$\overline{1 }$) condition
Fig. 8 TEM images of the LPBF 304L samples in a, b as-built state and c, d solution-annealed state after He+ ion implantation and PIA at 600 °C for 1 h. TEM images in (a-d) were recorded in - 300 nm, - 130 nm, - 120 nm and - 500 nm under-focus conditions, respectively. In a an oxide inclusion is shown to trap helium bubbles at its interface with the matrix, in b bubbles are gathered nearby the dislocation lines, in c the bubbles are found to accumulate at a grain boundary, in d larger and coarsened helium bubbles are encircled at the grain interior where defect sinks are absent
Fig. 9 Schematics to illustrate the helium bubble microstructure before and after PIA at 600 °C for 1 h: a as-built sample S1, b solution-annealed sample S3, c as-built sample S2 after PIA at 600 °C for 1 h, d solution-annealed sample S4 after PIA at 600 °C for 1 h
[1] |
D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater. 117, 371 (2016)
DOI URL |
[2] |
W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, S.S. Babu, Int. Mater. Rev. 61, 315 (2016)
DOI URL |
[3] |
S. Şahin, M. Übeyli, J. Fusion. Energy. 27, 271 (2008)
DOI URL |
[4] | D. Guzonas, R. Novotny, S. Penttilä, A. Toivonen, W. Zheng, Radiation effects and mechanical properties. Mater. Water. Chem. Supercrit. Water. Cool. React. (2018). https://doi.org/10.1016/b978-0-08-102049-4.00003-9 |
[5] |
S.H. Li, J.T. Li, W.Z. Han, Materials (Basel). 12, 1036 (2019)
DOI URL |
[6] |
N.J. Dutta, S.R. Mohanty, K.P. Sooraj, Vacuum 170, 108962 (2019)
DOI URL |
[7] |
S. Nogami, A. Hasegawa, T. Tanno, K. Imasaki, K. Abe, J. Nucl. Sci. Technol. 48, 130 (2011)
DOI URL |
[8] |
L. Jia, X. He, S. Wu, D. Wang, H. Cao, Y. Dou, W. Yang, Mater. Sci. Forum. 944, 378 (2018)
DOI URL |
[9] | M.S. Ding, L. Tian, W.Z. Han, J. Li, E. Ma, Z.W. Shan Phys. Rev. Lett. 117, 1 (2016) i.Google Scholar |
[10] |
H. Trinkaus, B.N. Singh, J. Nucl. Mater. 323, 229 (2003)
DOI URL |
[11] | P.B.R. Rajan, I. Monnet, E. Hug, A. Etienne, N. Enikeev, C. Keller, X. Sauvage, R. Valiev, B. Radiguet, I.O.P. Conf, Ser. Mater. Sci. Eng. 63, 012121 (2014) ii.CAS Google Scholar |
[12] |
B. Radiguet, A. Etienne, P. Pareige, X. Sauvage, R. Valiev, J. Mater. Sci. 43, 7338 (2008)
DOI URL |
[13] |
R. Schäublin, A. Ramar, N. Baluc, V. de Castro, M.A. Monge, T. Leguey, N. Schmid, C. Bonjour, J. Nucl. Mater. 351, 247 (2006)
DOI URL |
[14] |
L. Kurpaska, I. Jozwik, M. Lewandowska, J. Jagielski, Vacuum 145, 144 (2017)
DOI URL |
[15] |
Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, T. Zhu, Nat. Mater. 17, 63 (2018)
DOI URL |
[16] |
S. Li, J. Hu, W.Y. Chen, J. Yu, M. Li, Y. Wang, Scr. Mater. 178, 245 (2020)
DOI URL |
[17] | K. Saeidi, F. Akhtar, R. Soc, Open. Sci. 5, 172394 (2018) iii.Google Scholar |
[18] |
K. Saeidi, L. Kvetková, F. Lofaj, Z. Shen, RSC Adv. 5, 20747 (2015)
DOI URL |
[19] |
J. Lin, F. Chen, X. Tang, J. Liu, S. Shen, G. Ge, Vacuum 174, 109183 (2020)
DOI URL |
[20] | J. Hou, B. Dai, Y. Li, J. Zhao, Z. Chen, D. Pan, Y. Zhu, K. Zhang, A. Huang, J. Nucl. Mater. 542, 152443 (2020) |
[21] |
M. Song, M. Wang, X. Lou, R.B. Rebak, G.S. Was, J. Nucl. Mater. 513, 33 (2019)
DOI URL |
[22] |
A. De Backer, G. Adjanor, C. Domain, M.L. Lescoat, S. Jublot-Leclerc, F. Fortuna, A. Gentils, C.J. Ortiz, A. Souidi, C.S. Becquart, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 352, 107 (2015)
DOI URL |
[23] |
Y.S. Wang, K.Q. Chen, C.H. Zhang, J.M. Quan, J.G. Sun, Z.Y. Zhao, J. Nucl. Mater. 240, 70 (1996)
DOI URL |
[24] |
S. Jublot-Leclerc, M.L. Lescoat, F. Fortuna, L. Legras, X. Li, A. Gentils, J. Nucl. Mater. 466, 646 (2015)
DOI URL |
[25] |
I. Villacampa, J.C. Chen, P. Spätig, H.P. Seifert, F. Duval, J. Nucl. Mater. 500, 389 (2018)
DOI URL |
[26] |
V.N. Chernikov, H. Trinkaus, H. Ullmaier, J. Nucl. Mater. 250, 103 (1997)
DOI URL |
[27] |
J. Chen, S. Romanzetti, W.F. Sommer, H. Ullmaier, J. Nucl. Mater. 304, 1 (2002)
DOI URL |
[28] |
F. Carsughi, H. Ullmaier, H. Trinkaus, W. Kesternich, V. Zell, J. Nucl. Mater. 212-215, 336 (1994)
DOI URL |
[29] |
J.R. Jeffries, M.A. Wall, K.T. Moore, A.J. Schwartz, J. Nucl. Mater. 410, 84 (2011)
DOI URL |
[30] |
R. Rajaraman, G. Amarendra, B. Viswanathan, C.S. Sundar, K.P. Gopinathan, J. Nucl. Mater. 231, 55 (1996)
DOI URL |
[31] |
M. Roldán, P. Fernández, J. Rams, F.J. Sánchez, A. Gómez-Herrero, Micromachines 9, 12 (2018)
DOI URL |
[32] |
J. Hou, W. Chen, Z. Chen, K. Zhang, A. Huang, J. Mater. Sci. Technol. 48, 63 (2020)
DOI URL |
[33] |
J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 268, 1818 (2010)
DOI URL |
[34] |
T. Yang, C. Lu, K. Jin, M.L. Crespillo, Y. Zhang, H. Bei, L. Wang, J. Nucl. Mater. 488, 328 (2017)
DOI URL |
[35] | S. Chen, Y. Wang, N. Hashimoto, S. Ohnuki, Nucl. Mater. Energy 15, 203 (2018) |
[36] |
R.E. Stoller, G.R. Odette, J. Nucl. Mater. 131, 118 (1985)
DOI URL |
[37] |
I.R. Brearley, D.A. MacInnes, J. Nucl. Mater. 95, 239 (1980)
DOI URL |
[38] |
H. Trinkaus, Scr. Metall. 23, 1773 (1989)
DOI URL |
[39] |
N. Chen, G. Ma, W. Zhu, A. Godfrey, Z. Shen, G. Wu, X. Huang, Mater. Sci. Eng. A 759, 65 (2019)
DOI URL |
[40] |
K.G. Prashanth, J. Eckert, J. Alloys Compd. 707, 27 (2017)
DOI URL |
[1] | Mohammad Hossein Mosallanejad, Saber Sanaei, Masoud Atapour, Behzad Niroumand, Luca Iuliano, Abdollah Saboori. Microstructure and Corrosion Properties of CP-Ti Processed by Laser Powder Bed Fusion under Similar Energy Densities [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1453-1464. |
[2] | Sihan Chen, Tian Liang, Guangcai Ma, Chengwu Zheng, Deli Chen, Yingche Ma, Kui Liu. High-Temperature Plasticity Enhanced by Multiple Secondary Phases in a High-Si Austenitic Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1519-1530. |
[3] | Jialin Yang, Xing Li, Hanbo Yao, Yingchun Guan. Interfacial Features of Stainless Steel/Titanium Alloy Multi-metal Fabricated by Laser Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1357-1364. |
[4] | Jingyi Zou, Zhongwei Wang, Yanlong Ma, Liwen Tan. Tribocorrosion Behavior and Degradation Mechanism of 316L Stainless Steel in Alkaline Solution: Effect of Tribo-Film [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1365-1375. |
[5] | Yong Yang, Xue-Ling Hou, Mou-Cheng Li. Effect of Vacuum Pressure on the Initiation and Propagation of Pitting Corrosion of 2205 Duplex Stainless Steel in Concentrated Seawater [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 1023-1033. |
[6] | Hua-Zhen Jiang, Zheng-Yang Li, Tao Feng, Peng-Yue Wu, Qi-Sheng Chen, Shao-Ke Yao, Jing-Yu Hou. Effect of Annealing Temperature and Strain Rate on Mechanical Property of a Selective Laser Melted 316L Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 773-789. |
[7] | Wenbin Tian, Dong Wu, Yiyi Li, Shanping Lu. Precipitation Behavior and Mechanical Properties of a 16Cr-25Ni Superaustenitic Stainless Steel Weld Metal During Post-weld Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 577-590. |
[8] | Xin Cai, Xiaoqiang Hu, Leigang Zheng, Dianzhong Li. Redistribution of C and N Atoms in High Nitrogen Martensitic Stainless Steel During Cryogenic Treatment [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 591-595. |
[9] | Ling Zhang, Wen-He Liao, Ting-Ting Liu, Hui-Liang Wei, Chang-Chun Zhang. In Situ Elimination of Pores During Laser Powder Bed Fusion of Ti-6.5Al-3.5Mo-l.5Zr-0.3Si Titanium Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 439-452. |
[10] | Yunmian Xiao, Yongqiang Yang, Shibiao Wu, Jie Chen, Di Wang, Changhui Song. Microstructure and Mechanical Properties of AlSi10Mg Alloy Manufactured by Laser Powder Bed Fusion Under Nitrogen and Argon Atmosphere [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 486-500. |
[11] | Sheng Huang, Xiaoyu Zhang, Dichen Li, Qingyu Li. Microstructure and Mechanical Properties of B-Bearing Austenitic Stainless Steel Fabricated by Laser Metal Deposition In-Situ Alloying [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 453-465. |
[12] | Kang Zhao, Xiao-Qi Li, Li-Wei Wang, Qi-Rong Yang, Lian-Jun Cheng, Zhong-Yu Cui. Passivation Behavior of 2507 Super Duplex Stainless Steel in Hot Concentrated Seawater: Influence of Temperature and Seawater Concentration [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 326-340. |
[13] | Sheng Li, Biao Cai, Ranxi Duan, Lei Tang, Zihan Song, Dominic White, Oxana V. Magdysyuk, Moataz M. Attallah. Synchrotron Characterisation of Ultra-Fine Grain TiB2/Al-Cu Composite Fabricated by Laser Powder Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 78-92. |
[14] | Hui-Hu Lu, Xing-Quan Shen, Wei Liang. Effect of Grain Size on the Precipitation Behaviour in Super-Ferritic Stainless Steels During a Long-Term Ageing [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1285-1295. |
[15] | Langlang Zhao, Shitong Wei, Dianbao Gao, Shanping Lu. Effect of Carbon Content on the Creep Rupture Properties and Microstructure of 316H Weld Metals [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 986-996. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||