Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (6): 1023-1033.DOI: 10.1007/s40195-021-01329-8
Previous Articles Next Articles
Yong Yang, Xue-Ling Hou, Mou-Cheng Li()
Received:
2021-05-04
Revised:
2021-07-10
Accepted:
2021-07-30
Online:
2022-06-10
Published:
2022-06-15
Contact:
Mou-Cheng Li
About author:
Mou-Cheng Li, mouchengli@shu.edu.cnYong Yang, Xue-Ling Hou, Mou-Cheng Li. Effect of Vacuum Pressure on the Initiation and Propagation of Pitting Corrosion of 2205 Duplex Stainless Steel in Concentrated Seawater[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 1023-1033.
Add to citation manager EndNote|Ris|BibTeX
NaCl | MgCl2 | Na2SO4 | CaCl2 | KCl | NaHCO3 | KBr |
---|---|---|---|---|---|---|
49.06 | 10.40 | 8.18 | 2.32 | 1.39 | 0.402 | 0.202 |
Table 1 Chemical composition of the concentrated artificial seawater (g L-1)
NaCl | MgCl2 | Na2SO4 | CaCl2 | KCl | NaHCO3 | KBr |
---|---|---|---|---|---|---|
49.06 | 10.40 | 8.18 | 2.32 | 1.39 | 0.402 | 0.202 |
Fig. 2 SEM morphologies (back-scattered electrons) of pits formed on the specimens after the potentiodynamic anodic polarization under different conditions: a-d 101.3 kPa; e-h 28.4 kPa; a, e metastable pits inside the α-phase, b, f metastable pits in the α/γ boundary, c, g metastable pits inside the γ-phase, d, h stable pits
Ea (VSCE) | n | τ (s) | b1 | b2 | v (s-1) |
---|---|---|---|---|---|
Atmospheric static condition (101.3 kPa) | |||||
0.30 | 0.85 ± 0.03 | 1787.1 ± 339.6 | 3.93 ± 0.95 | 1.43 ± 0.25 | (8.5 ± 3.9) × 10-4 |
0.35 | 0.73 ± 0.08 | 448.3 ± 263.2 | 2.74 ± 0.24 | 1.06 ± 0.22 | (3.1 ± 1.6) × 10-3 |
0.40 | 0.67 ± 0.15 | 230.6 ± 181.3 | 2.48 ± 0.98 | 0.75 ± 0.27 | (11.0 ± 5.9) × 10-3 |
0.45 | 0.40 ± 0.06 | 14.2 ± 2.7 | 1.42 ± 0.57 | 0.30 ± 0.05 | (9.2 ± 4.1) × 10-2 |
0.50 | 0.26 ± 0.02 | 4.6 ± 1.2 | 1.05 ± 0.23 | 0.23 ± 0.03 | (23.0 ± 6.2) × 10-2 |
Vacuum boiling condition (28.4 kPa) | |||||
0.10 | 0.85 ± 0.04 | - | - | - | - |
0.15 | 0.72 ± 0.13 | 233.9 ± 160.6 | 1.45 ± 0.30 | - 1.59 ± 0.34 | (6.8 ± 4.4) × 10-3 |
0.20 | 0.64 ± 0.09 | 47.9 ± 18.7 | 0.84 ± 0.06 | - 1.49 ± 0.43 | (2.6 ± 1.4) × 10-2 |
0.25 | 0.42 ± 0.03 | 12.7 ± 11.9 | 1.19 ± 0.08 | - 0.81 ± 0.15 | (11.0 ± 4.2) × 10-2 |
0.30 | 0.35 ± 0.06 | 6.4 ± 2.4 | 0.83 ± 0.08 | - 0.08 ± 0.23 | (19.0 ± 8.2) × 10-2 |
Table 2 Influence of applied potential on the parameters n, τ -1 and b in concentrated seawater at the pressure of 101.3 and 28.4 kPa
Ea (VSCE) | n | τ (s) | b1 | b2 | v (s-1) |
---|---|---|---|---|---|
Atmospheric static condition (101.3 kPa) | |||||
0.30 | 0.85 ± 0.03 | 1787.1 ± 339.6 | 3.93 ± 0.95 | 1.43 ± 0.25 | (8.5 ± 3.9) × 10-4 |
0.35 | 0.73 ± 0.08 | 448.3 ± 263.2 | 2.74 ± 0.24 | 1.06 ± 0.22 | (3.1 ± 1.6) × 10-3 |
0.40 | 0.67 ± 0.15 | 230.6 ± 181.3 | 2.48 ± 0.98 | 0.75 ± 0.27 | (11.0 ± 5.9) × 10-3 |
0.45 | 0.40 ± 0.06 | 14.2 ± 2.7 | 1.42 ± 0.57 | 0.30 ± 0.05 | (9.2 ± 4.1) × 10-2 |
0.50 | 0.26 ± 0.02 | 4.6 ± 1.2 | 1.05 ± 0.23 | 0.23 ± 0.03 | (23.0 ± 6.2) × 10-2 |
Vacuum boiling condition (28.4 kPa) | |||||
0.10 | 0.85 ± 0.04 | - | - | - | - |
0.15 | 0.72 ± 0.13 | 233.9 ± 160.6 | 1.45 ± 0.30 | - 1.59 ± 0.34 | (6.8 ± 4.4) × 10-3 |
0.20 | 0.64 ± 0.09 | 47.9 ± 18.7 | 0.84 ± 0.06 | - 1.49 ± 0.43 | (2.6 ± 1.4) × 10-2 |
0.25 | 0.42 ± 0.03 | 12.7 ± 11.9 | 1.19 ± 0.08 | - 0.81 ± 0.15 | (11.0 ± 4.2) × 10-2 |
0.30 | 0.35 ± 0.06 | 6.4 ± 2.4 | 0.83 ± 0.08 | - 0.08 ± 0.23 | (19.0 ± 8.2) × 10-2 |
P (kPa) | n | τ (s) | b1 | b2 | v (s-1) |
---|---|---|---|---|---|
101.3 | 0.85 ± 0.03 | 1787.15 ± 339.63 | 3.93 ± 0.95 | 1.43 ± 0.25 | 5.8 × 10-4 ± 1.3 × 10-4 |
50.7 | 0.68 ± 0.03 | 367.18 ± 143.56 | 1.87 ± 0.64 | 0.93 ± 0.14 | 3.4 × 10-3 ± 1.6 × 10-3 |
40.5 | 0.61 ± 0.06 | 142.07 ± 30.37 | 1.81 ± 0.30 | 0.83 ± 0.19 | 7.4 × 10-3 ± 1.2 × 10-3 |
30.4 | 0.40 ± 0.13 | 11.82 ± 7.23 | 1.05 ± 0.12 | - 0.11 ± 0.09 | 1.1 × 10-1 ± 4.6 × 10-2 |
28.4 | 0.35 ± 0.06 | 6.4 ± 2.42 | 0.83 ± 0.08 | - 0.08 ± 0.23 | 1.9 × 10-1 ± 8.2 × 10-2 |
Table 3 Influence of vacuum pressures on the parameters n, τ -1 and b in concentrated seawater
P (kPa) | n | τ (s) | b1 | b2 | v (s-1) |
---|---|---|---|---|---|
101.3 | 0.85 ± 0.03 | 1787.15 ± 339.63 | 3.93 ± 0.95 | 1.43 ± 0.25 | 5.8 × 10-4 ± 1.3 × 10-4 |
50.7 | 0.68 ± 0.03 | 367.18 ± 143.56 | 1.87 ± 0.64 | 0.93 ± 0.14 | 3.4 × 10-3 ± 1.6 × 10-3 |
40.5 | 0.61 ± 0.06 | 142.07 ± 30.37 | 1.81 ± 0.30 | 0.83 ± 0.19 | 7.4 × 10-3 ± 1.2 × 10-3 |
30.4 | 0.40 ± 0.13 | 11.82 ± 7.23 | 1.05 ± 0.12 | - 0.11 ± 0.09 | 1.1 × 10-1 ± 4.6 × 10-2 |
28.4 | 0.35 ± 0.06 | 6.4 ± 2.42 | 0.83 ± 0.08 | - 0.08 ± 0.23 | 1.9 × 10-1 ± 8.2 × 10-2 |
Fig. 5 Typical SEM morphologies of the corrosion pits formed on the specimen surface after potentiostatic polarization at 0.3 VSCE under different vacuum pressures: a 101.3 kPa, b 40.5 kPa, c 30.4 kPa, d 28.4 kPa
Fig. 6 Typical 3D morphologies and depth of the pits formed on the specimen surfaces after the potentiostatic polarization at 0.3 VSCE under different vacuum pressures: a-c 101.3 kPa, d-f 40.5 kPa, g-i 30.4 kPa, j-l 28.4 kPa
[1] | A. Ophir, F. Lokiec, Desalination 182, 187 (2005). |
[2] | C. Sommariva, H. Hogg, K. Callister, Desalination 136, 169 (2001). |
[3] | G.W. Thomson, Chem. Rev. 38, 1 (1946). |
[4] | C.T. Kwok, F.T. Cheng, H.C. Man, Mater. Sci. Eng. A 290, 145 (2000). |
[5] | H.X. Guo, B.T. Lu, J.L. Luo, Electrochim. Acta 51, 315 (2005). |
[6] | R.M. Fernández-Domene, E. Blasco-Tamarit, D.M. García-García, J. García-Antón, Corros. Sci. 52, 3453 (2010). |
[7] | J.P. Franc, J.M. Michel, Fundamentals of cavitation, (Springer science & Business media, New York), (2006), pp. 268-269. |
[8] | S.Z. Luo, Y.G. Zheng, M.C. Li, Corrosion 59, 597 (2003). |
[9] | B. Vyas, I.L.H. Hansson, Corros. Sci. 30, 761 (1990). |
[10] | Q.N. Song, N. Xu, Y. Tong, C.M. Huang, S.Y. Sun, C.B. Xu, Y.F. Bao, Y.F. Jiang, Y.X. Qiao, Z.Y. Zhu, Z.B. Wang, Acta Metall Sin. Engl. Lett. 32, 1470 (2019). |
[11] | D.M. García-García, J. García-Antón, A. Igual-Muñoz, Corros. Sci. 50, 2560 (2008). |
[12] | Y. Yang, H. Zeng, S. Xin, X. Hou, M. Li, Corros. Sci. 165, 108383 (2020). |
[13] | H. Zeng, Y. Yang, M. Zeng, M. Li, J. Mater. Sci. Technol. 66, 177 (2021). |
[14] | K.S. Raja, D.A. Jones, Corros. Sci. 48, 1623 (2006). |
[15] | R.W. Revie, H.H. Uhlig, Corrosion and corrosion control, 4th edn.(John Wiley &Sons, Inc., Hoboken New Jersey, (2008), pp. 117. |
[16] | J. Olsson, M. Snis, Desalination 205, 104 (2007). |
[17] | J.O. Nilsson, Mater. Sci. Technol. 8, 685 (1992). |
[18] | J.O. Olsson, H.L. Groth, Desalination 97, 67 (1994). |
[19] | J. Olsson, V. Jägerström, I. Resini, in Proceedings IDA World Congress on Desalination and Water Reuse in Bahamas, 2003. |
[20] | A.U. Malik, N.A. Siddiqi, I.N. Andijani, Desalination 97, 189 (1994). |
[21] | T. Hodgkiess, P.S. Chia, Desalination 84, 267 (1991). |
[22] | J. Olsson, Desalination 183, 217 (2005). |
[23] | C.G. Wang, X.F. Li, J. Wei, X. Wei, F. Xue, R.Y. Ma, J.H. Dong, W. Ke, Acta Metall Sin. Engl. Lett. 31, 1137 (2018). |
[24] | G.S. Frankel, , J. Electrochem. Soc. 145, 2186(1998). |
[25] | D. Sun, Y. Jiang, Y. Tang, Q. Xiang, C. Zhong, J. Liao, J. Li, Electrochim. Acta 54, 1558 (2009). |
[26] | G.T. Burstein, C. Liu, R.M. Souto, S.P. Vines, Corros. Eng. Sci. Technol. 39, 25 (2004). |
[27] | M. Janik-Czachor, G.C. Wood, G.E. Thompson Br. Corros. J. 15, 154 (1980). |
[28] | Z. Szklarska-Smialowska, Pitting and Crevice Corrosion, (NACE international, Houston), (2005), pp. 113. |
[29] | P.C. Pistorius, G.T. Burstein, Corros. Sci. 36, 525 (1994). |
[30] | G.T. Burstein, S.P. Vines, J. Electrochem. Soc. 148, B504 (2001). |
[31] | S.P. Mattin, G.T. Burstein, Philos. Mag. Lett. 76, 341 (1997). |
[32] | J. Soltis, Corros. Sci. 90, 5 (2015). |
[33] | Z. Wang, Q.Z. Zhou, L. Zhang, J.Y. Hu, Z.R. Zhang, M.X. Lu, Acta Metall Sin. Engl. Lett. 32, 585 (2019). |
[34] | B. Deng, Y. Jiang, J. Gong, C. Zhong, J. Gao, J. Li, Electrochim. Acta 53, 5220 (2008). |
[35] | S. Atashin, M. Pakshir, A. Yazdani, Acta Metall Sin. Engl. Lett. 23, 161 (2010). |
[36] | Z. Liu, X.Q. Cheng, S.J. Lu, X.G. Li, Acta Metall Sin. Engl. Lett. 23, 431 (2010). |
[37] | F. Arjmand, L. Zhang, J. Wang, Nucl. Eng. Des. 322, 215 (2017). |
[38] | Y.X. Qiao, Y.G. Zheng, P.C. Okafor, W. Ke, Electrochim. Acta 54, 2298 (2009). |
[39] | Z. Feng, X. Cheng, C. Dong, L. Xu, X. Li, J. Nucl. Mater. 407, 171 (2010). |
[40] | D.E. Williams, J. Stewart, P.H. Balkwill, Corros. Sci. 53, 1213 (1994). |
[41] | Y. Tang, Y. Zuo, J. Wang, X. Zhao, B. Niu, B. Lin, Corros. Sci. 80, 111 (2014). |
[42] | M.H. Moayed, R.C. Newman, Corros. Sci. 48, 1004 (2006). |
[43] | L. Zhang, W. Zhang, Y. Jiang, B. Deng, D. Sun, J. Li, Electrochim. Acta 54, 5387 (2009). |
[44] | F. Eghbali, M.H. Moayed, A. Davoodi, N. Ebrahimi, Corros. Sci. 53, 513 (2011). |
[45] | N. Ebrahimi, M.H. Moayed, A. Davoodi, Corros. Sci. 53, 1278 (2011). |
[46] | Y. Zhou, D.L. Engelberg, Electrochem. Commun. 117, 106779 (2020). |
[47] | H.H. Hassan, Electrochim. Acta 51, 526 (2005). |
[48] | L. Liu, Y. Li, F.H. Wang, J. Mater. Sci. Technol. 26, 1 (2010). |
[49] | T.P. Hoar, Nature 216, 1299 (1967). |
[50] | J.J. Park, S.I. Pyun, W.J. Lee, H.P. Kim, Corrosion 55, 380 (1999) |
[51] | H.J. Engell, N.D. Stolica, Z. Phys. Chem. 20, 113 (1959) |
[52] | I. Milošev, M. Metikoš-Hukovic, J. Electrochem. Soc. 138, 61 (1991). |
[53] | J.D. Kim, S.I. Pyun, Electrochim. Acta 40, 1863(1995). |
[54] | J.D. Kim, S.I. Pyun, Electrochim. Acta 40, 1963( 1995). |
[55] | W. Tian, S. Li, N. Du, S. Chen, Q. Wu, Corros. Sci. 93, 242 (2015). |
[56] | N.J. Laycock, S.P. White, J.S. Noh, P.T. Wilson, R.C. Newman, , J. Electrochem. Soc. 145, 1101 (1998). |
[57] | P. Ernst, R.C. Newman, Corros. Sci. 44, 927 (2002). |
[58] | P. Ernst, R.C. Newman, Corros. Sci. 44, 943 (2002). |
[59] | P. Ernst, N.J. Laycock, M.H. Moayed, R.C. Newman, Corros. Sci. 39, 1133 (1997). |
[60] | P. Ernst, R.C. Newman, Corros. Sci. 49, 3705 (2007). |
[61] | L. Peguet, A. Gaugain, C. Dussart, B. Malki, B. Baroux, Corros. Sci. 60, 280 (2012). |
[62] | P.C. Pistorius, G.T. Burstein, Philos. Trans. R. Soc. A341, 531 (1992). |
[63] | N.J. Laycock, M.H. Moayed, R.C. Newman, J. Electrochem. Soc. 145, 2622 (1998). |
[64] | G.S. Frankel, L. Stockert, F. Hunkeler, H. Boehni, Corrosion 43, 429 (1987). |
[65] | C. Pan, L. Liu, Y. Li, F. Wang, Corros. Sci. 73, 32 (2013). |
[66] | J.M. Kolotyrkin, Corrosion 19, 261t (1963). |
[67] | L. Liu, Y. Li, F. Wang, Electrochim. Acta 55, 2430 (2010). |
[68] | C. Man, C. Dong, Z. Cui, K. Xiao, Q. Yu, X. Li, Appl. Surf. Sci. 427, 763 (2018). |
[69] | J. Huang, X. Wu, E.H. Han, Corros. Sci. 52, 3444 (2010). |
[70] | P. Schmuki, J. Solid State Electrochem. 6, 145 (2002). |
[71] | D.D. Macdonald, Electrochim. Acta 56, 1761 (2011). |
[72] | C.O.A. Olsson, D. Landolt, Electrochim. Acta 48, 1093 (2003). |
[73] | W. Tian, N. Du, S. Li, S. Chen, Q. Wu, Corros. Sci. 85, 372 (2014). |
[74] | M.V. Cardoso, S.T. Amaral, E.M.A. Martini, Corros. Sci. 50, 2429 (2008). |
[75] | D.D. Macdonald, Pure Appl. Chem. 71, 951 (1999). |
[76] | Y. Han, J. Mei, Q. Peng, E.H. Han, W. Ke, Corros. Sci. 112, 625 (2016). |
[77] | J.R. Galvele, Corros. Sci. 47, 3053 (2005). |
[78] | J.R. Galvele, J. Electrochem. Soc. 123, 464 (1976). |
[79] | N. Sato, T. Nakagawa, K. Kudo, M. Sakashita, Trans. Jpn Inst. Met. 13, 103 (1972). |
[80] | A. Broli, H. Holtan, M. Midjo, Br. Corros. J. 8, 173 (1973). |
[81] | T.E. Pou, J. Electrochem. Soc. 131, 1243 (1984). |
[82] | T.P. Hoar, D.C. Mears, G.P. Rothwell, Corros. Sci. 5, 279 (1965). |
[83] | G.T. Burstein, C. Liu, R.M. Souto, Biomaterials 26, 245 (2005). |
[84] | W.M. Tian, Y.J. Ai, S.M. Li, N. Du, C. Ye, Acta Metall Sin. Engl. Lett. 28, 430 (2015). |
[85] | N.J. Laycock, S.P. White, J. Electrochem. Soc. 148, B264 (2001). |
[1] | Kang Zhao, Xiao-Qi Li, Li-Wei Wang, Qi-Rong Yang, Lian-Jun Cheng, Zhong-Yu Cui. Passivation Behavior of 2507 Super Duplex Stainless Steel in Hot Concentrated Seawater: Influence of Temperature and Seawater Concentration [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 326-340. |
[2] | Tong Xi, Lu Yin, Chun-Guang Yang, Ke Yang. Hot Deformation Behavior and Processing Map of a Cu-Bearing 2205 Duplex Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(12): 1537-1548. |
[3] | Gang Liu, Shi-Lei Li, Hai-Long Zhang, Xi-Tao Wang, Yan-Li Wang. Characterization of Impact Deformation Behavior of a Thermally Aged Duplex Stainless Steel by EBSD [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(8): 798-806. |
[4] | Chang-Gang Wang, Xiao-Fang Li, Jie Wei, Xin Wei, Fang Xue, Rong-Yao Ma, Jun-Hua Dong, Wei Ke. Crevice Corrosion of Several Supper Stainless Steels in the Simulated LT-MED Environment [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(11): 1137-1147. |
[5] | Jing Han, Jia-Peng Sun, Ying Han, Huan Liu. Hot Workability of the as-Cast 21Cr Economical Duplex Stainless Steel Through Processing Map and Microstructural Studies Using Different Instability Criteria [J]. Acta Metallurgica Sinica (English Letters), 2017, 30(11): 1080-1088. |
[6] | Paolo Ferro,Alberto Fabrizi,Franco Bonollo. Non-isothermal Dissolution Modelling of Sigma Phase in Duplex Stainless Steels [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(9): 859-868. |
[7] | Brahim Belkessa, Djamel Miroud, Naima Ouali, Billel Cheniti. Microstructure and Mechanical Behavior in Dissimilar SAF 2205/API X52 Welded Pipes [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(7): 674-682. |
[8] | Marco Breda, Massimo Pellizzari, Marco Frigo. σ-Phase in Lean Duplex Stainless Steel Sheets [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(3): 331-337. |
[9] | Jun-Young Park, Yong-Sik Ahn. Effect of Ni and Mn on the Mechanical Properties of 22Cr Micro-duplex Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(1): 32-38. |
[10] | Sridhar R., Devendranath Ramkumar K., Arivazhagan N.. Characterization of Microstructure, Strength, and Toughness of Dissimilar Weldments of Inconel 625 and Duplex Stainless Steel SAF 2205 [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(6): 1018-1030. |
[11] | P.M.Ajith, P.Sathiya, S.Aravindan. Experimental Investigation on Friction Welding of UNS S32205 Duplex Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(6): 995-1007. |
[12] | Tian LIANG, Xiaoqiang HU, Xiuhong KANG, Dianzhong LI. Microstructure Evolution of a Cold-rolled 25Cr-7Ni-3Mo-0.2N Duplex Stainless Steel during Two-step Aging Treatments [J]. Acta Metallurgica Sinica (English Letters), 2013, 26(5): 517-522. |
[13] | C.Leygraf, J.Pan, M.Femenia. MICROSCOPIC CORROSION STUDIES OF DUPLEX STAINLESS STEELS [J]. Acta Metallurgica Sinica (English Letters), 2004, 17(5): 625-631 . |
[14] | P.L.Mao. MICROSTRUCTURE AND TENSILE PROPERTY OF AN AS-CAST DUPLEX STAINLESS STEEL [J]. Acta Metallurgica Sinica (English Letters), 2001, 14(4): 285-290 . |
[15] | ZHANG Tiancheng JIANG Xiaoxia LI Shizhuo SHI Changxu Institute of Metal Research,Academia Sinica,Shenyang,China Institute of Metal Research,Academia Sinica,Shenyang 110015,China. INTERACTION BETWEEN CORROSION AND WEAR OF STA LESS STEEL IN H_3PO_4+NaCl SOLUTION [J]. Acta Metallurgica Sinica (English Letters), 1993, 6(12): 421-426. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||