Acta Metallurgica Sinica (English Letters) ›› 2021, Vol. 34 ›› Issue (10): 1395-1406.DOI: 10.1007/s40195-021-01236-y
Previous Articles Next Articles
Massab Junaid1, Fahd Nawaz Khan2(), Tauheed Shahbaz2, Haris saleem2, Julfikar Haider3
Received:
2020-10-16
Revised:
2021-02-19
Accepted:
2021-02-20
Online:
2021-04-23
Published:
2021-04-23
Contact:
Fahd Nawaz Khan
About author:
Fahd Nawaz Khan, fahd@giki.edu.pk.Massab Junaid, Fahd Nawaz Khan, Tauheed Shahbaz, Haris saleem, Julfikar Haider. Influence of Filler on the Microstructure, Mechanical Properties and Residual Stresses in TIG Weldments of Dissimilar Titanium Alloys[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(10): 1395-1406.
Add to citation manager EndNote|Ris|BibTeX
S. No. | Current (A) | Pulse width (ms) | Voltage (V) | Welding speed (mm/min) | Filler alloys | ||
---|---|---|---|---|---|---|---|
Primary | Background | High | Low | ||||
1 | 32 | 16 | 8 | 4 | 10 | 32.5 | - |
2 | 32 | 16 | 8 | 4 | 10 | 32.5 | cpTi |
3 | 32 | 16 | 8 | 4 | 10 | 32.5 | Ti-5Al-2.5Sn |
Table 1 Parameters for dissimilar pulsed TIG welding of Ti-5Al-2.5Sn/cPTi
S. No. | Current (A) | Pulse width (ms) | Voltage (V) | Welding speed (mm/min) | Filler alloys | ||
---|---|---|---|---|---|---|---|
Primary | Background | High | Low | ||||
1 | 32 | 16 | 8 | 4 | 10 | 32.5 | - |
2 | 32 | 16 | 8 | 4 | 10 | 32.5 | cpTi |
3 | 32 | 16 | 8 | 4 | 10 | 32.5 | Ti-5Al-2.5Sn |
Fig. 4 Microstructures of HAZ toward Ti-5Al-2.5Sn side in the Ti-5Al-2.5Sn/cpTi dissimilar alloy weldments with a no filler, b Ti-5Al-2.5Sn filler wire, c cp-Ti filler wire
Fig. 5 Microstructures of HAZ toward cpTi side in the Ti-5Al-2.5Sn/cpTi dissimilar alloy weldments with a no filler, b Ti-5Al-2.5Sn filler wire, c cp-Ti filler wire
Sample | Maximum load (N) | Energy at break (J) | Extension at break (mm) |
---|---|---|---|
No filler wire | 3658 | 4 | 2 |
Ti-5Al-2.5Sn filler wire | 3668 | 15 | 5 |
cpTi filler wire | 3757 | 21 | 7 |
Table 2 Stress-strain characteristics of the smooth tensile testing of Ti-5Al-2.5Sn/cpTi weld joints
Sample | Maximum load (N) | Energy at break (J) | Extension at break (mm) |
---|---|---|---|
No filler wire | 3658 | 4 | 2 |
Ti-5Al-2.5Sn filler wire | 3668 | 15 | 5 |
cpTi filler wire | 3757 | 21 | 7 |
Sample | Maximum load (N) | Energy at break (J) | Extension at break (mm) |
---|---|---|---|
No filler wire | 5248 | 10 | 3 |
Ti-5Al-2.5Sn filler wire | 5600 | 16 | 3 |
CP-titanium filler wire | 5896 | 29 | 6 |
Table 3 Stress-strain characteristics of notch tensile specimen of Ti-5Al-2.5Sn/cpTi weld joint
Sample | Maximum load (N) | Energy at break (J) | Extension at break (mm) |
---|---|---|---|
No filler wire | 5248 | 10 | 3 |
Ti-5Al-2.5Sn filler wire | 5600 | 16 | 3 |
CP-titanium filler wire | 5896 | 29 | 6 |
Fig. 9 SEM fractographs of the fractured surfaces of double notch tensile specimens of Ti-5Al-2.5Sn/cpTi dissimilar weldments with a no filler, b Ti-5Al-2.5Sn filler, c cpTi filler
Fig. 12 Nano-indentation load-depth curves of the weldments obtained using Ti-5Al-2.5Sn wire filler: a HAZ of Ti-5Al-2.5Sn side, b FZ, c HAZ of cpTi side
S. No. | Type of filler | Nano-hardness (GPa) | Elastic modulus (GPa) | ||||||
---|---|---|---|---|---|---|---|---|---|
BM cpTi | HAZ cpTi side | FZ | HAZ of Ti-5Al-2.5Sn side | BM Ti-5Al-2.5Sn | HAZ of cpTi side | FZ | HAZ of Ti-5Al-2.5Sn side | ||
1 | No filler | 2.0 ± 0.3 | 2 ± 0.1 | 3 ± 0.1 | 5 ± 0 | 4.5 ± 0.4 | 120 ± 9 | 128 ± 3 | 145 ± 4 |
2 | cpTi | 2 ± 0.4 | 3.6 ± 0.8 | 4 ± 0 | 123 ± 7 | 134 ± 4 | 140 ± 9 | ||
3 | Ti-5Al-2.5Sn | 2 ± 0.5 | 4 ± 0.3 | 4 ± 0 | 113 ± 3 | 139 ± 1 | 136 ± 5 |
Table 4 Summary of the nano-mechanical properties of the Ti-5Al-2.5Sn/cPTi weld joint for different conditions of filler
S. No. | Type of filler | Nano-hardness (GPa) | Elastic modulus (GPa) | ||||||
---|---|---|---|---|---|---|---|---|---|
BM cpTi | HAZ cpTi side | FZ | HAZ of Ti-5Al-2.5Sn side | BM Ti-5Al-2.5Sn | HAZ of cpTi side | FZ | HAZ of Ti-5Al-2.5Sn side | ||
1 | No filler | 2.0 ± 0.3 | 2 ± 0.1 | 3 ± 0.1 | 5 ± 0 | 4.5 ± 0.4 | 120 ± 9 | 128 ± 3 | 145 ± 4 |
2 | cpTi | 2 ± 0.4 | 3.6 ± 0.8 | 4 ± 0 | 123 ± 7 | 134 ± 4 | 140 ± 9 | ||
3 | Ti-5Al-2.5Sn | 2 ± 0.5 | 4 ± 0.3 | 4 ± 0 | 113 ± 3 | 139 ± 1 | 136 ± 5 |
S. No. | Type of filler | Depth (mm) | Longitudinal residual stresses (MPa) | Transverse residual stresses (MPa) | ||
---|---|---|---|---|---|---|
cpTi side | Ti-5Al-2.5Sn side | cpTi side | Ti-5Al-2.5Sn side | |||
1 | No filler | 0.1 | 63 | 130 | 89 | 85 |
0.7 | 30 | - 43 | 46 | 20 | ||
2 | cpTi | 0.1 | - 2 | - 53 | 107 | 61 |
0.7 | - 35 | - 23 | 74 | 150 | ||
3 | Ti-5Al-2.5Sn | 0.1 | 99 | - 177 | 69 | - 148 |
0.7 | 56 | - 169 | 18 | - 111 |
Table 5 Longitudinal and transverse residual stresses in the Ti-5Al-2.5Sn/cPTi weld joint for different conditions of filler
S. No. | Type of filler | Depth (mm) | Longitudinal residual stresses (MPa) | Transverse residual stresses (MPa) | ||
---|---|---|---|---|---|---|
cpTi side | Ti-5Al-2.5Sn side | cpTi side | Ti-5Al-2.5Sn side | |||
1 | No filler | 0.1 | 63 | 130 | 89 | 85 |
0.7 | 30 | - 43 | 46 | 20 | ||
2 | cpTi | 0.1 | - 2 | - 53 | 107 | 61 |
0.7 | - 35 | - 23 | 74 | 150 | ||
3 | Ti-5Al-2.5Sn | 0.1 | 99 | - 177 | 69 | - 148 |
0.7 | 56 | - 169 | 18 | - 111 |
[1] |
J. Szusta, N. Tuzun, O. Karakaş, Theor. Appl. Fract. Mech. 100, 27 (2019)
DOI URL |
[2] |
H. Koizumi, Y. Takeuchi, H. Imai, T. Kawai, J. Prosthodont. Res. 63, 266 (2019)
DOI URL |
[3] |
M. Froend, F. Fomin, S. Riekehr, P. Alvarez, F. Zubiri, S. Bauer, B. Klusemann, N. Kashaev, Opt. Laser Technol. 96, 123 (2017)
DOI URL |
[4] |
A.B. Short, Mater. Sci. Technol. 25, 309 (2009)
DOI URL |
[5] | S.Q. Wang, J.H. Liu, D.L. Chen, Mater. Sci. Eng. A 584, 47 (2013) |
[6] | W. Zhou, K.G. Chew, Mater. Sci. Eng. A 347, 180 (2003) |
[7] |
G.Q. Wang, Z.B. Zhao, B.B. Yu, J.R. Liu, Q.J. Wang, J.H. Zhang, R. Yang, J.W. Li, Acta Metall. Sin. (Engl. Lett.) 30, 499 (2017)
DOI URL |
[8] |
H.J. Yi, Y.J. Lee, K.O. Lee, Acta Metall. Sin. (Engl. Lett.) 28, 684 (2015)
DOI URL |
[9] |
M. Junaid, F.N. Khan, N. Baksh, M.N. Baig, K. Rahman, Mater. Des. 139, 198 (2018)
DOI URL |
[10] |
M.R. Amaya-Vazquez, J.M. Sanchez-Amaya, Z. Boukha, F.J. Botana, Corros. Sci. 56, 36 (2012)
DOI URL |
[11] |
M. Junaid, F.N. Khan, K. Rahman, M.N. Baig, Opt. Laser Technol. 97, 405 (2017)
DOI URL |
[12] | M. Junaid, F.N. Khan, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 233, 2030 (2018) |
[13] | M. Wu, R. Xin, Y. Wang, Y. Zhou, K. Wang, Q. Liu, Mater. Sci. Eng. A 677, 50 (2016) |
[14] |
M. Junaid, M.N. Baig, M. Shamir, F.N. Khan, K. Rehman, J. Haider, J. Mater. Process. Technol. 242, 24 (2017)
DOI URL |
[15] |
C.T. Hsieh, R.K. Shiue, R. Huang, L.W. Tsay, Mater. Sci. Eng. A. 653, 139 (2016)
DOI URL |
[16] |
C.T. Hsieh, C.Y. Chu, R.K. Shiue, L.W. Tsay, J. Mater. Des 59, 227 (2014)
DOI URL |
[17] | X.L. Gao, L.J. Zhang, J. Liu, J.X. Zhang, Mater. Sci. Eng. A 559, 14 (2013) |
[18] | A. Karpagaraj, N. Siva, K. Sankaranarayanasamy, Mater. Sci. Eng. A 640, 180 (2015) |
[19] |
V. Balasubramanian, V. Jayabalan, M. Balasubramanian, Mater. Des. 29, 1459 (2008)
DOI URL |
[20] |
F. Fedor, M. Froend, V. Ventzke, P. Alvarez, S. Bauer, K. Nikolai, Int. J. Adv. Manuf. Technol. 97, 2019 (2018)
DOI URL |
[21] |
S.Q. Wang, J.H. Liu, D.L. Chen, Mater. Des. 49, 716 (2013)
DOI URL |
[22] |
C. Cheng, B. Yu, Z. Chen, J. Liu, J. Mater. Sci. Technol. 34, 1859 (2018)
DOI |
[23] |
J. Li, J. Shen, S. Hu, H. Zhang, X. Bu, Opt. Laser Technol. 109, 123 (2019)
DOI URL |
[24] |
K. Zhang, Z. Lei, Y. Chen, M. Liu, Y. Liu, Opt. Laser Technol. 73, 139 (2015)
DOI URL |
[25] |
C.Y. Chu, C.T. Hsieh, L.W. Tsay, Mater Des. 63, 14 (2014)
DOI URL |
[26] | L. Tan, Z. Yao, W. Zhou, H. Guo, Y. Zhao, 14, 302 |
[27] |
S.Q. Wang, W.Y. Li, K. Jing, X.Y. Zhang, W.Y. Li, K. Jing, X. Y Zhang, D. L. Chen, Mater. Sci. Eng. A. 697, 224 (2017)
DOI URL |
[28] | H. Zhang, P. He, J. Feng, H. Wu, Mater. Sci. Eng. A 425, 255 (2006) |
[29] |
H. Zhang, S. Hu, J. Shen, D. Li, X. Bu, Opt. Laser Technol. 74, 158 (2015)
DOI URL |
[30] | W. A. B. Iii, J. Hurley, Weld. Res. Supp. 00, 175 (1994). |
[31] |
V.E. Yeganeh, P. Li, Mater. Des. 124, 78 (2017)
DOI URL |
[32] |
Q. Chu, M. Zhang, J. Li, C. Yan, Z. Qin, J. Mater. Process. Technol. 240, 293 (2017)
DOI URL |
[33] | I. Tomashchuk, P. Sallamand, H. Andrzejewski, D. Grevey, Intermetallics 19, 1466 (2011) |
[34] |
A. De, T. DebRoy. Sci. Technol. Weld. Join. 16, 204 (2011).
DOI URL |
[35] | M.J. Tan, G.W. Chen, S. Thiruvarudchelvan, J. Mater. Process. Technol. 192, 434 (2007) |
[36] | T. Ahmed, H.J. Rack, Mater. Sci. Eng. A 243, 206 (1998) |
[37] | L. Zeng, T.R. Bieler, Mater. Sci. Eng. A 392, 403 (2005) |
[38] |
R. Filip, K. Kubiak, W. Ziaja, J. Sieniawski, J. Mater. Process. Technol. 133, 84 (2003)
DOI URL |
[39] | G.F. Vander Voort, S.R. Lampman, B.R. Sanders, G.J. Anton, C. Polakowski, J. Kinson, K. Muldoon, S.D. Henry, W.W. Scott Jr., Metallogr Microstruct. 9, 44073 (2004) |
[40] | T. Kelly, W. Cremisio, W. Simon, Weld. J. 68, 14 (1989) |
[41] |
K. Saida, A. Taniguchi, H. Okauchi, H. Ogiwara, K. Nishimoto, Sci. Technol. Weld. Join. 16, 553 (2011)
DOI URL |
[42] |
K. Saida, K. Ohta, K. Nishimoto, Sci. Technol. Weld. Join. 12, 593 (2007)
DOI URL |
[43] | ASTM E2546-07, Standard Practice for Instrumented Indentation Testing (2007). |
[44] | J. Jang, J. Cer. Process. Res. 10, 391 (2009) |
[45] |
L.N. Zhu, B.S. Xu, H.D. Wang, C.B. Wang, Crit. Rev. Solid State Mater. Sci. 40, 77 (2015)
DOI URL |
[46] |
N.S. Rossini, M. Dassisti, K.Y. Benyounis, A.G. Olabi, Mater. Des. 35, 572 (2012)
DOI URL |
[47] |
P. Xie, H.Y. Zhao, B. Wu, S.L. Gong, Acta Metall. Sin. (Engl. Lett.) 28, 922 (2015)
DOI URL |
[48] |
J.X. Zhang, Y. Xue, S.L. Gong, Sci. Technol. Weld. Join. 10, 643 (2005)
DOI URL |
[49] | B. Appolaire, A. Settefrati, E. Aeby-Gautier, Mater. Today Proc. 2, S589 (2015) |
[50] |
R.J. Moat, H.J. Stone, A.A. Shirzadi, J.A. Francis, S. Kundu, A.F. Mark, H.K.D.H. Bhadeshia, L. Karlsson, P.J. Withers, Sci. Technol. Weld. Join. 16, 279 (2011)
DOI URL |
[1] | Mehran Dadkhah, Mohammad Hossein Mosallanejad, Luca Iuliano, Abdollah Saboori. A Comprehensive Overview on the Latest Progress in the Additive Manufacturing of Metal Matrix Composites: Potential, Challenges, and Feasible Solutions [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1173-1200. |
[2] | Wei Zhang, Zhi-Hong Dong, Hong-Wei Kang, Chen Yang, Yu-Jiang Xie, Mohamad Ebrahimnia, Xiao Peng. Enhancement of Strength-Ductility Balance of the Laser Melting Deposited 12CrNi2 Alloy Steel Via Multi-step Quenching Treatment [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1234-1244. |
[3] | Jinyang Liu, Jian Chen, Li Zhou, Bingyao Liu, Yang Lu, Shanghua Wu, Xin Deng, Zhongliang Lu, Zhipeng Xie, Wei Liu, Jianye Liu, Zhi Qu. Role of Co Content on Densification and Microstructure of WC-Co Cemented Carbides Prepared by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(9): 1245-1254. |
[4] | Jiafen Song, Zishu Chai, Jian Zheng, Qingfeng Wu, Feng He, Zenan Yang, Junjie Li, Jincheng Wang, Haiou Yang, Zhijun Wang. Design Fe-based Eutectic Medium-Entropy Alloys Fe2NiCrNbx [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1103-1108. |
[5] | Yulun Wu, Rui Hu, Jieren Yang, Keren Zhang, Xuyang Wang. Active Eutectoid Decomposition of α → γ + τ1 and the Morphological Evolution in a Ru-Containing TiAl Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1042-1050. |
[6] | Xuan Huang, Yong Dong, Shaomu Lu, Chuanqiang Li, Zhengrong Zhang. Effects of Homogenized Treatment on Microstructure and Mechanical Properties of AlCoCrFeNi2.2 Near-Eutectic High-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(8): 1079-1086. |
[7] | Zhitao Yu, Minghui Chen, Qunchang Wang, Xiaolan Wang, Fuhui Wang. Effect of Interfacial Microstructure on Mechanical and Tribological Properties of Cu/WS2 Self-lubricating Composites Sintered by Spark Plasma Sintering [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 913-924. |
[8] | Chuanfeng Wu, Junmei Chen, Zhiyuan Yu, Hao Lu, Chun Yu, Jijin Xu. Ductility Anisotropy Induced by Ferrite in Direct Laser Deposited 17-4 PH Steel: Combined Microstructure and Dislocation Density Simulation [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 765-776. |
[9] | Ling-Yang Yuan, Pan-Wen Han, Ghulam Asghar, Bao-Liang Liu, Jin-Ping Li, Bin Hu, Peng-Huai Fu, Li-Ming Peng. Development of High Strength and Toughness Non-Heated Al-Mg-Si Alloys for High-Pressure Die-Casting [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(6): 845-860. |
[10] | Guang-Lei Wang, Jin-Lai Liu, Ji-De Liu, Yi-Zhou Zhou, Xu-Dong Sun, Hai-Feng Zhang, Xiao-Feng Sun. Effect of Orientation on Stress-Rupture Property and Related Deformation Microstructure of a Ni-Base Re-containing Single-Crystal Superalloy at 900 °C [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 719-728. |
[11] | Dong Wu, Shitong Wei, Shanping Lu. A Study of Microstructure and Mechanical Properties for the Autogenous Single-Pass Butt Weldment of a Ferritic/Martensitic Steel Using Gas Tungsten Arc Welding [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(5): 628-638. |
[12] | Chenliang Chu, Weiping Chen, Zhen Chen, Zhenfei Jiang, Hao Wang, Zhiqiang Fu. Microstructure and Mechanical Behavior of FeNiCoCr and FeNiCoCrMn High-Entropy Alloys Fabricated by Powder Metallurgy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 445-454. |
[13] | Ibrahim Ondicho, Bernard Alunda, Fredrick Madaraka, Melody Chepkoech. Effect of Bimodal Grain Size Distribution on the Strain Hardening Behavior of a Medium-Entropy Alloy [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 465-475. |
[14] | Long Xin, Yongming Han, Ligong Ling, Yonghao Lu, Tetsuo Shoji. Surface Oxidation and Subsurface Microstructure Evolution of Alloy 690TT Induced by Partial Slip Fretting Corrosion in High-Temperature Pure Water [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 543-554. |
[15] | Li-Li Zhang, Jie Song, Sajjad Ur Rehman, Jia-Jie Li, Lei Wang, Mu-Nan Yang, Ren-Hui Liu, Qing-Zheng Jiang, Zhen-Chen Zhong. Uneven Evolution of Microstructure, Magnetic Properties and Coercivity Mechanism of Mo-Substituted Nd-Ce-Fe-B Alloys [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(4): 590-596. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||