Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (9): 1583-1590.DOI: 10.1007/s40195-025-01886-2
Previous Articles Next Articles
					
													Qinyuan Zheng1,2, Yi Lu1,2, Chengwu Zheng2( ), Peng Liu1, Tian Liang1, Yikun Luan1,2, Dianzhong Li2(
), Peng Liu1, Tian Liang1, Yikun Luan1,2, Dianzhong Li2( )
)
												  
						
						
						
					
				
Received:2025-01-24
															
							
																	Revised:2025-02-22
															
							
																	Accepted:2025-02-28
															
							
																	Online:2025-09-10
															
							
																	Published:2025-06-04
															
						Contact:
								Chengwu Zheng, Qinyuan Zheng, Yi Lu, Chengwu Zheng, Peng Liu, Tian Liang, Yikun Luan, Dianzhong Li. Improving Ductility of a 3Mn Medium-Mn Steel by Manipulating the Austenite Reversion Path[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(9): 1583-1590.
Add to citation manager EndNote|Ris|BibTeX
 
																													Fig. 1 a Schematic illustration showing the two-step IA process. b, c SEM images and b1, c1 corresponding XRD patterns of the PA and P-ART, samples. d, e Dilatation curves of the annealing samples as a function of temperature treated by the PA and P-ART processes. f1-f3, g1-g3 EPMA maps revealing microstructures and alloying distributions of C and Mn of the PA and P-ART samples: f1, g1 BSE images, f2, g2 C distribution maps and f3, g3 Mn distribution maps. (αF: ferrite, αM: fresh martensite, γ: retained austenite)
 
																													Fig. 2 STEM images and relevant Mn distributions in the PA a-d and P-ART e-h samples: a, e BF images, b, f HAADF images, c, g Mn distribution maps, and d, h Mn line scan profiles along the white dashed arrows in c, g. (αF: ferrite, αM: fresh martensite, γ: retained austenite)
 
																													Fig. 3 a Scheme of the austenite reversion path during the two-step IA process. b-e SEM images showing microstructures at various stages during the two-step IA process: b the initial martensitic microstructure, c the duplex microstructure after the PA process, d the microstructure at the beginning of the P-ART process, e the resultant microstructure after the P-ART process. (αF: ferrite, αM: fresh martensite, γ: retained austenite, θ: cementite)
 
																													Fig. 4 Resultant microstructures of the C-ART sample a-d and the P-ART sample e-h: a, e SEM-BSE images, b, f the magnified views of the microstructure in the white rectangles in a, e, c, g corresponding EBSD phase distribution map overlapped with band contrast images, d, h Mn distribution maps. (αF: ferrite, γ: retained austenite, θ: cementite)
| [1] | C. Suppan, T. Hebesberger, A. Pichler, J. Rehrl, O. Kolednik, Mater. Sci. Eng. A 735, 89 (2018) | 
| [2] | Z. Dai, H. Chen, R. Ding, Q. Lu, C. Zhang, Z. Yang, S. van der Zwaag, Mater. Sci. Eng. R 143, 100590 (2021) | 
| [3] | W. Zhang, J. Xu, Mater. Des. 221, 110994 (2022) | 
| [4] | P. Kantanen, S. Anttila, P. Karjalainen, R. Latypova, M. Somani, A. Kaijalainen, J. Kömi, Mater. Sci. Eng. A 847, 143341 (2022) | 
| [5] | T.W.J. Kwok, D. Dye, Int. Mater. Rev. 68, 1098 (2023) | 
| [6] | C.P. Huang, C. Hu, Y.X. Liu, Z.Y. Liang, M.X. Huang, Mater. Futures 1, 032001 (2022) | 
| [7] | S. Lee, S.J. Lee, B.C. De Cooman, Scr. Mater. 65, 225 (2011) | 
| [8] | D.W. Suh, S.J. Kim, Scr. Mater. 126, 63 (2017) | 
| [9] | S.H. Sun, M.H. Cai, H. Ding, H.L. Yan, Y.Z. Tian, S. Tang, P. Hodgson, Mater. Sci. Eng. A 858, 144118 (2022) | 
| [10] | M. Soleimani, A. Kalhor, H. Mirzadeh, Mater. Sci. Eng. A 795, 140023 (2020) | 
| [11] | B. Sun, A. Kwiatkowski da Silva, Y. Wu, Y. Ma, H. Chen, C. Scott, D. Ponge, D. Raabe, Int. Mater. Rev. 68, 786 (2023) | 
| [12] | R.S. Varanasi, M. Lipińska-Chwałek, J. Mayer, B. Gault, D. Ponge, Scr. Mater. 206, 114228 (2022) | 
| [13] | Q. Guo, H.W. Yen, H. Luo, S.P. Ringer, Acta Mater. 225, 117601 (2022) | 
| [14] | D.M. Field, D.J. Magagnosc, B.C. Hornbuckle, J.T. Lloyd, K.R. Limmer, Metall. Mater. Trans. A 53, 2530 (2022) | 
| [15] | J.H. Kim, G. Gu, M. Koo, E.Y. Kim, J.S. Lee, D.W. Suh, Scr. Mater. 201, 113955 (2021) | 
| [16] | L. Liu, B. He, M. Huang, Adv. Eng. Mater. 20, 1701083 (2018) | 
| [17] | X. Zhang, G. Miyamoto, Y. Toji, Y. Zhang, T. Furuhara, Acta Mater. 209, 116772 (2021) | 
| [18] | C. Shao, W. Hui, Y. Zhang, X. Zhao, Y. Weng, Mater. Sci. Eng. A 726, 320 (2018) | 
| [19] | J. Zhang, Y. Xu, D. Han, Z. Tong, Scr. Mater. 218, 114790 (2022) | 
| [20] | R. Ding, D. Tang, A.M. Zhao, Scr. Mater. 88, 21 (2014) | 
| [21] | L. Jiang, J. Wang, T. Zhang, T. Dorin, X. Sun, Mater. Sci. Eng. A 825, 141899 (2021) | 
| [22] | W. Yu, L. Qian, X. Peng, T. Wang, K. Li, C. Wei, Z. Chen, F. Zhang, J. Meng, J. Mater. Sci. Technol. 167, 119 (2023) | 
| [23] | B. Hu, H. Luo, Acta Mater. 176, 250 (2019) | 
| [24] | A. Kozłowska, M. Morawiec, A. Skowronek, A. Grajcar, K. Matus, P.M. Nuckowski, Mater. Sci. Eng. A 865, 144650 (2023) | 
| [25] | G. Tian, J. Xiao, L. Yan, S. Yao, Z. Bao, A. Zhao, J. Mater. Res. Technol. 32, 1620 (2024) | 
| [26] | W. Yu, L. Qian, C. Wei, K. Li, Y. Ding, P. Yu, Z. Jia, F. Zhang, J. Meng, Int. J. Plast. 183, 104148 (2024) | 
| [27] | J. Han, S.J. Lee, J.G. Jung, Y.K. Lee, Acta Mater. 78, 369 (2014) | 
| [28] | A. Mehrabi, J.R. McDermid, X. Wang, H. Zurob, Steel Res. Int. 94, 2200952 (2023) | 
| [29] | X. Weng, Y. Wu, J. Luo, C. Hutchinson, Materialia 32, 101889 (2023) | 
| [30] | Y. Xu, W. Li, H. Du, H. Jiao, B. Liu, Y. Wu, W. Ding, Y. Luo, Y. Nie, N. Min, W. Liu, X. Jin, Acta Mater. 214, 116986 (2021) | 
| [31] | D.S. Smith, K.D. Clarke, A.J. Clarke, Scr. Mater. 238, 115717 (2024) | 
| [32] | B.J. Hu, Q.Y. Zheng, Y. Lu, C.N. Jia, T. Liang, C.W. Zheng, D.Z. Li, Scr. Mater. 225, 115162 (2023) | 
| [33] | R. Tao, Q. Zeng, X. Chai, L. Yuan, P. Wen, D. Li, Mater. Charact. 191, 112172 (2022) | 
| [34] | J. Kumpati, S.M. Hasan, M.B. Rolland, A. Borgenstam, Metall. Mater. Trans. A 55, 466 (2023) | 
| [35] | C. Zhang, Z. Xiong, D. Yang, X. Cheng, Acta Mater. 235, 118060 (2022) | 
| [36] | C. Hu, C.P. Huang, Y.X. Liu, A. Perlade, K.Y. Zhu, M.X. Huang, Acta Mater. 245, 118629 (2023) | 
| [37] | Z. Wang, M.X. Huang, Int. J. Plast. 134, 102851 (2020) | 
| [38] | X.L. An, R.M. Zhang, Y.X. Wu, Y. Zou, L.T. Zhang, K. Zhang, L.Y. Wang, Y.S. Li, C.R. Hutchinson, W.W. Sun, Mater. Sci. Eng. A 831, 142286 (2022) | 
| [39] | J.J. Mueller, X. Hu, X. Sun, Y. Ren, K. Choi, E. Barker, J.G. Speer, D.K. Matlock, E. De Moor, Mater. Des. 203, 109598 (2021) | 
| [40] | M. Belde, H. Springer, G. Inden, D. Raabe, Acta Mater. 86, 1 (2015) | 
| [41] | H.F. Xu, J. Zhao, W.Q. Cao, J. Shi, C.Y. Wang, J. Li, H. Dong, ISIJ Int. 52, 868 (2012) | 
| [42] | C. Zhao, W.Q. Cao, C. Zhang, Z.G. Yang, H. Dong, Y.Q. Weng, Mater. Sci. Technol. 30, 791 (2013) | 
| [43] | S. Kang, J.G. Speer, D. Krizan, D.K. Matlock, E. De Moor, Mater. Des. 97, 138 (2016) | 
| [44] | H.W. Luo, C.H. Qiu, H. Dong, J. Shi, Mater. Sci. Technol. 30, 1367 (2014) | 
| [45] | A. Kwiatkowski da Silva, G. Inden, A. Kumar, D. Ponge, B. Gault, D. Raabe, Acta Mater. 147, 165 (2018) | 
| [46] | B. Sun, N. Vanderesse, F. Fazeli, C. Scott, J. Chen, P. Bocher, M. Jahazi, S. Yue, Scr. Mater. 133, 9 (2017) | 
| [47] | H. Fu, X. Chen, L. Zhang, Y. Tan, S. Xiang, J. Xu, Y. Yan, J. Li, Mater. Des. 245, 113250 (2024) | 
| [48] | L. Zhang, Y. Zhang, H. Li, L. Kan, L. Zong, L. Wang, L. Jiang, W. Yang, W. Sun, Mater. Sci. Eng. A 916, 147353 (2024) | 
| [49] | X. Zhang, R. Teng, T. Liu, Y. Shi, Z. Lv, Q. Zhou, X. Wang, Y. Wang, H. Liu, Z. Xing, Mater. Charact. 184, 111661 (2022) | 
| [1] | Jiayu Wang, Ke Liu, Zhao Lei, Xing Li, Li Liu, Sujun Wu. Machine-Learning-Assisted Phase Prediction in High-Entropy Alloys Using Two-Step Feature Selection Strategy [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(8): 1261-1274. | 
| [2] | Chao Hai, Yuetong Zhu, Cuiwei Du, Xiaogang Li. Effect of Retained Austenite on the Corrosion Resistance of High-Strength Low-Carbon Steel in Artificial Seawater [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 657-671. | 
| [3] | Chao Hai, Kang Huang, Cuiwei Du, Xiaogang Li. In-Depth Understanding the Retained Austenite Stability on the Susceptibility of Multi-Alloying Ultra-Strength Steel to Hydrogen-Induced Cracking [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(4): 691-704. | 
| [4] | Ye Liu, Shuran Chu, Hui Guo, Mengyao Kong, Chenxi Liu, Jingwen Zhang, Ran Ding, Yongchang Liu. Enhancing the Strength of Medium Mn Steel by Flash Treatment [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(1): 139-150. | 
| [5] | Lan Zhang, Dao-Kui Xu, Bao-Jie Wang, Cui-Lan Lu, Shuo Wang, Xiang-Bo Xu, Dong-Liang Wang, Xin Lv, En-Hou Han. Mechanical Behavior and Failure Mechanism of an As-Extruded Mg-11wt%Y Alloy at Elevated Temperature [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(6): 969-981. | 
| [6] | Xiaoliang Jia, Guhui Gao, Xiaolu Gui, Chun Feng, R. D. K. Misra, Bingzhe Bai. Uncovering Microstructure-Property Relationship in Ni-Alloyed Fe-Mn-Al-C Low-Density Steel Treated by Hot-Rolling and Air-Cooling Process [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(4): 713-725. | 
| [7] | Chao Xia, Kexin Zhao, Xin Zhou, Yuqi He, Panpan Gao, Hengxin Zhang, Guangrui Gao, Fengying Zhang, Hua Tan. Effect of Microstructural Characteristics on Fracture Toughness in Direct Energy Deposited Novel Ti-6Al-4V-1Mo Alloy [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 119-131. | 
| [8] | Sheng Cao, Hongyu Liu, Jin Jiang, Ke He, Binghua Lv, Hao Zhang, Lujie Zhang, Jingrong Meng, Hao Deng, Xiaodong Niu. Effect of Heat Treatment on Gradient Microstructure and Tensile Property of Laser Powder Bed Fusion Fabricated 15-5 Precipitation Hardening Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(1): 181-195. | 
| [9] | Xian Zhang, Li Gong, Yanpeng Feng, Zhihui Wang, Miao Yang, Lin Cheng, Jing Liu, Kaiming Wu. Effect of Retained Austenite on Corrosion Behavior of Ultrafine Bainitic Steel in Marine Environment [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(5): 717-731. | 
| [10] | Ji-Peng Zou, Xue-Mei Luo, Bin Zhang, Guo-Dong Liu, Hong-Lei Chen, Xiao-Fei Zhu, Wen-Ke Yang, Guang-Ping Zhang. Microstructure Evolution and Tensile Properties of the Alx(CoCrNi)100-x Medium-Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(12): 2045-2057. | 
| [11] | Hua-Zhen Jiang, Qi-Sheng Chen, Zheng-Yang Li, Xin-Ye Chen, Hui-Lei Sun, Shao-Ke Yao, Jia-Huiyu Fang, Qi-Yun Hu. Microstructure and Size-Dependent Mechanical Properties of Additively Manufactured 316L Stainless Steels Produced by Laser Metal Deposition [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 1-20. | 
| [12] | Yongxin Lu, Fan Luo, Zhen Chen, Jian Cao, Kai Song, Lei Zhao, Xueli Xu, Hongduo Wang, Wenya Li. Microstructure and Mechanical Properties of Graphene Reinforced K418 Superalloy by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1477-1493. | 
| [13] | Bao-Jia Hu, Qin-Yuan Zheng, Chun-Ni Jia, Peng Liu, Yi-Kun Luan, Cheng-Wu Zheng, Dian-Zhong Li. Improvement of Mechanical Properties of a Medium-Mn TRIP Steel by Precursor Microstructure Control [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1068-1078. | 
| [14] | Fei Peng, Yunbo Xu, Xingli Gu. Control of Austenite Characteristics and Ferrite Formation Mechanism by Multiple-Cyclic Annealing in Quenching and Partitioning Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1143-1156. | 
| [15] | Hui Wang, Biao Guo, Xuguang An, Yu Zhang. Influence of Cold-Rolling Reduction on Microstructure and Tensile Properties of Nuclear FeCrAl Alloy with Low Cr and Nb Contents [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(12): 2101-2110. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
 WeChat
			   WeChat
			