Acta Metallurgica Sinica (English Letters) ›› 2022, Vol. 35 ›› Issue (7): 1068-1078.DOI: 10.1007/s40195-021-01355-6
Previous Articles Next Articles
Bao-Jia Hu1,2, Qin-Yuan Zheng1,2, Chun-Ni Jia1,2, Peng Liu1,2, Yi-Kun Luan1, Cheng-Wu Zheng1(), Dian-Zhong Li1(
)
Received:
2021-08-02
Revised:
2021-09-14
Accepted:
2021-09-16
Online:
2022-07-10
Published:
2021-11-22
Contact:
Cheng-Wu Zheng,Dian-Zhong Li
About author:
Dian-Zhong Li, dzli@imr.ac.cn.Bao-Jia Hu, Qin-Yuan Zheng, Chun-Ni Jia, Peng Liu, Yi-Kun Luan, Cheng-Wu Zheng, Dian-Zhong Li. Improvement of Mechanical Properties of a Medium-Mn TRIP Steel by Precursor Microstructure Control[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1068-1078.
Add to citation manager EndNote|Ris|BibTeX
Fig. 2 SEM micrographs a, b, c and TEM bright-field images d, e, f showing the microstructures of the ART0.5 h a, d, ART1h b, e, and ART6h c, f samples. (θ: cementite, γ: retained austenite, αF: ferrite)
Fig. 4 SEM micrographs a-c and TEM bright-field images d-f of the samples pre-annealed with different temperatures: a, d 680 °C, b, e 700 °C, and c, f 720 °C. (θ: cementite, αF: ferrite, αM: fresh martensite)
Fig. 5 SEM micrographs a-c, TEM bright-field images d-f and TEM dark-field images g-i showing the microstructures of the PA-ART680 (left images), PA-ART700 (middle images) and PA-ART720 (right images) samples. (θ: cementite, γ: retained austenite)
Fig. 6 X-ray diffraction patterns a and the volume fraction of retained austenite b of the steel subjected to PA-ART processing with different pre-annealing temperatures
Fig. 7 Tensile properties of the conventional ART samples with different annealing time: a engineering stress-strain curves, b changes in the YS, UTS, and TEL
Fig. 8 Tensile properties of the PA-ART treated samples with different pre-annealing temperatures: a engineering stress-strain curves, b changes in the YS, UTS and TEL
Fig. 9 TEM micrographs showing the microstructure evolution during the ART process at 700 °C with different annealing time: a 5 s, b 60 s, c 600 s, d 1800s. (θ: cementite, αF: ferrite, αM: fresh martensite)
Fig. 10 EBSD images of band contrast overlapped by phase distribution a, d, inverse pole figure (IPF) b, e and KAM maps c, f of the sample after pre-annealing at 700 °C a, b, c and PA-ART700 sample d, e, f. In the phase map, retained austenite is shown in green, and ferrite or martensite (αM) is red. The blue and black lines in a and d denote boundaries with misorientation of 2° < θ < 5° and θ > 15°, respectively
Fig. 11 TEM micrographs showing microstructures a, c and Mn line profiles b, d of the sample pre-annealed at 700 °C for 0.5 h a, b and the PA-ART700 sample c, d. (αF: ferrite, αM: fresh martensite, γ: retained austenite.)
[1] |
H.W. Luo, J. Shi, C. Wang, W.Q. Cao, X.J. Sun, H. Dong, Acta Mater. 59, 4002 (2011)
DOI URL |
[2] | J. Shi, H.F. Xu, J. Zhao, W.Q. Cao, C. Wang, C.Y. Wang, J. Li, H. Dong, Acta Metall. Sin. (Engl. Lett.) 25, 111 (2012) |
[3] |
B. C.D. Cooman, P. Gibbs, S. Lee, D.K. Matlock, Metall. Mater. Trans. A 44, 2563 (2013)
DOI URL |
[4] |
C. Tian, H. Guo, B. Hu, M. Enomoto, C.J. Shang, Mater. Sci. Eng. A 810,141009 (2021)
DOI URL |
[5] |
B. Hu, H.W. Luo, F. Yang, H. Dong, J. Mater. Sci. Technol. 33, 1457 (2017)
DOI URL |
[6] |
Z.H. Cai, H. Ding, R.D.K. Misra, Z.Y. Ying, Acta Mater. 84, 229 (2015)
DOI URL |
[7] |
M.H. Cai, H.S. Huang, H.J. Pan, S.H. Sun, H. Ding, P. Hodgson, Acta Metall. Sin. (Engl. Lett.) 30, 665 (2017)
DOI URL |
[8] |
L. Liu, B.B. He, M.X. Huang, Adv. Eng. Mater. 20, 1701083 (2018)
DOI URL |
[9] |
S.Y. Jing, H. Ding, Y.P. Ren, Z.H. Cai, Scr. Mater. 202, 114019 (2021)
DOI URL |
[10] |
W.Q. Cao, C. Wang, J. Shi, M.Q. Wang, W.J. Hui, H. Dong, Mater. Sci. Eng. A 528,6661 (2011)
DOI URL |
[11] |
R. Ding, Z.B. Dai, M.X. Huang, Z.G. Yang, C. Zhang, H. Chen, Acta Mater. 147, 59 (2018)
DOI URL |
[12] |
D.T. Han, Y.B. Xu, R.D. Liu, F. Peng, Y. Zou, W.H. Sun, Scr. Mater. 187, 274 (2020)
DOI URL |
[13] |
Z.C. Li, H. Ding, R.D.K. Misra, Z.H. Cai, Mater. Sci. Eng. A 682,211 (2017)
DOI URL |
[14] |
Y. Zou, Y.B. Xu, G. Wang, Y. Han, H.X. Teng, D.T. Han, M.S. Qiu, R.F. Yang, D.K. Misra, Mater. Sci. Eng. A 802,140636 (2021)
DOI URL |
[15] |
P.Y. Wen, B. Hu, J.S. Han, H.W. Luo, J. Mater. Sci. Technol. 97, 54 (2021)
DOI URL |
[16] |
D.P. Yang, P.J. Du, D. Wu, H.L. Yi, J. Mater. Sci. Technol. 75, 205 (2021)
DOI |
[17] |
W.F. Huo, R.B. Song, Z.R. Zhang, Y.J. Wang, N.P. Zhou, S. Zhao, Y. Zhang, J.L. Sun, Mater. Sci. Eng. A 819,141457 (2021)
DOI URL |
[18] |
Y. Li, R. Wang, B. Wang, W. Ding, J. Mater. Sci. 56, 1783 (2021)
DOI URL |
[19] |
S. Yan, T.S. Liang, J.Q. Chen, T.L. Li, X.H. Liu, Mater. Sci. Eng. A 746,73 (2019)
DOI URL |
[20] |
D.W. Suh, S.J. Park, T.H. Lee, C.S. Oh, S.J. Kim, Metall. Mater. Trans. A 41, 397 (2010)
DOI URL |
[21] |
S. Lee, B.C.D. Cooman, Metall. Mater. Trans. A 44, 5018 (2013)
DOI URL |
[22] |
D.W. Suh, J.H. Ryu, M.S. Joo, H.S. Yang, K. Lee, H.K.D.H. Bhadeshia, Metall. Mater. Trans. A 44, 286 (2013)
DOI URL |
[23] |
L.B. Luo, W. Li, S.L. Liu, L. Wang, X.J. Jin, Mater. Sci. Eng. A 742,69 (2019)
DOI URL |
[24] |
J.W. Ma, Q. Lu, L. Sun, Y. Shen, Metall. Mater. Trans. A 49, 4404 (2018)
DOI URL |
[25] | A. Arlazarov, M. Goune, O. Bouaziz, F. Kegel, A. Hazotte, Mater. Sci. Technol. 35, 2076 (2019) |
[26] | Q.H. Han, Y.L. Zhang, L. Wang, Metall. Mater. Trans. A 46, 1917 (2015) |
[27] |
J.H. Han, Y.K. Lee, Acta Mater. 67, 354 (2014)
DOI URL |
[28] |
X.H. Wan, G. Liu, R. Ding, N. Nakada, Y.W. Chai, Z.G. Yang, C. Zhang, H. Chen, Scr. Mater. 166, 68 (2019)
DOI URL |
[29] |
T. Furukawa, H. Huang, O. Matsumura, Mater. Sci. Technol. 10, 964 (1994)
DOI URL |
[30] |
Y.B. Xu, Z.P. Hu, Y. Zou, X.D. Tan, D.T. Han, S.Q. Chen, D.G. Ma, R.D.K. Misra, Mater. Sci. Eng. A 688,40 (2017)
DOI URL |
[31] |
J.N. Zhu, R. Ding, J.G. He, Z.G. Yang, C. Zhang, H. Chen, Scr. Mater. 136, 6 (2017)
DOI URL |
[32] |
H.W. Luo, J.H. Liu, H. Dong, Metall. Mater. Trans. A 47, 3119 (2016)
DOI URL |
[33] |
M.M. Wang, M.L. Jiang, C.C. Tasan, Scr. Mater. 179, 75 (2020)
DOI URL |
[34] |
H.F. Xu, J. Zhao, W.Q. Cao, J. Shi, C.Y. Wang, J. Li, H. Dong, ISIJ Int. 52, 868 (2012)
DOI URL |
[35] |
C. Zhao, W.Q. Cao, C. Zhang, Z.G. Yang, H. Dong, Y.Q. Weng, Mater. Sci. Technol. 30, 791 (2014)
DOI URL |
[36] |
S. Kang, J.G. Speer, D. Krizan, D.K. Matlock, E.D. Moor, Mater. Des. 97, 138 (2016)
DOI URL |
[37] | P.J. Du, D.P. Yang, M.K. Bai, X.C. Xiong, D. Wu, G.D. Wang, H.L. Yi, Mater. Sci. Technol. 35, 2084 (2019) |
[38] | J.L. Liao, Y.Y. Zhang, S. Sridhar, X.D. Wang, Z.T. Zhang, ISIJ Int. 52, 211 (2012) |
[39] |
Y. Vermeulen, B. Coletti, B. Blanpain, P. Wollants, J. Vleugels, ISIJ Int. 42, 1234 (2002)
DOI URL |
[40] |
A. Arlazarov, M. Gouné, O. Bouaziz, A. Hazotte, G. Petitgand, P. Barges, Mater. Sci. Eng. A 542,31 (2012)
DOI URL |
[41] |
X. Li, R.B. Song, N.P. Zhou, J.J. Li, Scr. Mater. 154, 30 (2018)
DOI URL |
[42] |
Y.X. Wu, W.W. Sun, M.J. Styles, A. Arlazarov, C.R. Hutchinson, Acta Mater. 159, 209 (2018)
DOI URL |
[43] |
X.G. Zhang, G. Miyamoto, Y. Toji, Y.J. Zhang, T. Furuhara, Acta Mater. 209, 116772 (2021)
DOI URL |
[44] |
B. Hu, H.W. Luo, Acta Mater. 176, 250 (2019)
DOI URL |
[1] | Fei Qiang, Wen Wang, Ke Qiao, Pai Peng, Ting Zhang, Xiao-Hu Guan, Jun Cai, Qiang Meng, Hua-Xia Zhao, Kuai-She Wang. Microstructure and Mechanical Properties in Friction Stir Welded Thick Al-Zn-Mg-Cu Alloy Plate [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1329-1342. |
[2] | Haoyang Yu, Wei Fang, Jinfei Zhang, Jiaxin Huang, Jiaohui Yan, Xin Zhang, Juan Wang, Jianhang Feng, Fuxing Yin. Microstructural Evolution of Co35Cr25Fe30Ni10 TRIP Complex Concentrated Alloy with the Addition of Minor Cu and Its Effect on Mechanical Properties [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1291-1300. |
[3] | Xiong Zhou, Qichi Le, Chenglu Hu, Ruizhen Guo, Tong Wang, Chunming Liu, Dandan Li, Xiaoqiang Li. Mechanical Properties and Corrosion Behavior of Multi-Microalloying Mg Alloys Prepared by Adding AlCoCrFeNi Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1301-1316. |
[4] | Pengcheng Zhu, Lin Zhang, Zhaochang Li, K. H. Lo, Jianfeng Wang, Yufeng Sun, Shaokang Guan. Microstructure and Mechanical Properties of Friction Stir Welded 1.5 GPa Martensitic High-Strength Steel Plates [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1079-1089. |
[5] | Zhenye Chen, Zhangguo Lin, Jianjun Qi, Yang Feng, Liqing Chen, Guodong Wang. Microstructures and Mechanical Properties of a New Multi-functional 460 MPa Grade Construction Structural Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1131-1142. |
[6] | Fei Peng, Yunbo Xu, Xingli Gu. Control of Austenite Characteristics and Ferrite Formation Mechanism by Multiple-Cyclic Annealing in Quenching and Partitioning Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(7): 1143-1156. |
[7] | Hao Gu, Zhide Li, Kaiguang Luo, Laxman Bhatta, Hanqing Xiong, Yun Zhang, Charlie Kong, Hailiang Yu. Enhanced Mechanical Properties of AA5083 Matrix Composite via Introducing Al0.5CoCrFeNi Particles and Cryorolling [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(6): 879-889. |
[8] | Wen Wang, Shan-Yong Chen, Ke Qiao, Pai Peng, Peng Han, Bing Wu, Chen-Xi Wang, Jia Wang, Yu-Hao Wang, Kuai-She Wang. Microstructure, Mechanical Properties, and Corrosion Behavior of Mg-Al-Ca Alloy Prepared by Friction Stir Processing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 703-713. |
[9] | Peng Gong, Ying-Ying Zuo, Shu-De Ji, De-Jun Yan, Deng-Chang Li, Zhen Shang. Non-keyhole Friction Stir Welding for 6061-T6 Aluminum Alloy [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 763-772. |
[10] | Jinjin Yao, Shengyang Pang, Yuanhong Wang, Chenglong Hu, Rida Zhao, Jian Li, Sufang Tang, Hui-Ming Cheng. Effect of C/SiC Volume Ratios on Mechanical and Oxidation Behaviors of Cf/C-SiC Composites Fabricated by Chemical Vapor Infiltration Technique [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 801-811. |
[11] | Zhengran Liu, Xi Zhao, Kai Chen, Siqi Wang, Xianwei Ren, Zhimin Zhang, Yong Xue. Microstructural Evolution and Anisotropic Weakening Mechanism of ZK60 Magnesium Alloy Processed by Isothermal Repetitive Upsetting Extrusion [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 839-852. |
[12] | Wen-Ting Zhu, Jun-Jun Cui, Zhen-Ye Chen, Yang Zhao, Li-Qing Chen. Correlation of Microstructure Feature with Impact Fracture Behavior in a TMCP Processed High Strength Low Alloy Construction Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 527-536. |
[13] | Wenbin Tian, Dong Wu, Yiyi Li, Shanping Lu. Precipitation Behavior and Mechanical Properties of a 16Cr-25Ni Superaustenitic Stainless Steel Weld Metal During Post-weld Heat Treatment [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 577-590. |
[14] | Zijian Yu, Xi Xu, Baotian Du, Kang Shi, Ke Liu, Shubo Li, Xiuzhu Han, Tao Xiao, Wenbo Du. Precipitate Characteristics and Mechanical Performance of Cast Mg-6RE-1Zn-xCa-0.3Zr (x = 0 and 0.4 wt%) Alloys [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(4): 596-608. |
[15] | Yunmian Xiao, Yongqiang Yang, Shibiao Wu, Jie Chen, Di Wang, Changhui Song. Microstructure and Mechanical Properties of AlSi10Mg Alloy Manufactured by Laser Powder Bed Fusion Under Nitrogen and Argon Atmosphere [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 486-500. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||