Acta Metallurgica Sinica (English Letters) ›› 2025, Vol. 38 ›› Issue (9): 1591-1603.DOI: 10.1007/s40195-025-01881-7
Previous Articles Next Articles
					
													Xinhao Li1, Jieli Ma1, Yiren Wang1, Yong Jiang1,2( )
)
												  
						
						
						
					
				
Received:2025-01-23
															
							
																	Revised:2025-02-23
															
							
																	Accepted:2025-03-19
															
							
																	Online:2025-09-10
															
							
																	Published:2025-06-12
															
						Contact:
								Yong Jiang, Xinhao Li, Jieli Ma, Yiren Wang, Yong Jiang. A Novel Nano-Structured Die Steel with High Strength and High Thermal Stability[J]. Acta Metallurgica Sinica (English Letters), 2025, 38(9): 1591-1603.
Add to citation manager EndNote|Ris|BibTeX
| Cr | Ni | Al | W | Zr | Ti | Y | O | C | Fe | |
|---|---|---|---|---|---|---|---|---|---|---|
| wt% | 15.00 | 6.10 | 1.80 | 1.68 | 0.57 | 0.11 | 0.27 | 0.34 | 0.07 | Bal. | 
| at.% | 15.67 | 5.65 | 3.63 | 0.50 | 0.34 | 0.12 | 0.17 | 1.15 | 0.32 | Bal. | 
Table 1 Real chemical composition of the new die steel
| Cr | Ni | Al | W | Zr | Ti | Y | O | C | Fe | |
|---|---|---|---|---|---|---|---|---|---|---|
| wt% | 15.00 | 6.10 | 1.80 | 1.68 | 0.57 | 0.11 | 0.27 | 0.34 | 0.07 | Bal. | 
| at.% | 15.67 | 5.65 | 3.63 | 0.50 | 0.34 | 0.12 | 0.17 | 1.15 | 0.32 | Bal. | 
 
																													Fig. 2 a1-a3 Inverse pole figures (IPF), b1-b3 the statistical grain size distributions, c1-c3 the GB mis-orientations and band-contrast figures, and d1-d3 the LAGB and HAGB fractions of the as-HIPed, annealed and quench-tempered samples
 
																													Fig. 3 HAADF-STEM images and the corresponding nano-particle size analyses of a the annealed (HT1), b the quench-tempered (HT2), and c the annealed + thermally-exposed (HT1 + TE1) samples
 
																													Fig. 4 HAADF-STEM images and the corresponding EDS elemental mappings of nano-particles in a the annealed (HT1), b the quench-tempered (HT2), and c the annealed and thermally-exposed (HT1 + TE1) samples
 
																													Fig. 5 a1, a2 Dark-field TEM characterization of B2-NiAl nano-phases in the annealed samples before and after the TE1 thermal exposure (TE1: 600 °C/1000 h). b FFT diffractogram showing the high coherency between B2-NiAl and the iron matrix. c The corresponding size distribution analyses of B2-NiAl nano-phases. d Predicted coarsening rate of B2-NiAl nano-phases in the annealed sample during the thermal exposure
 
																													Fig. 6 HRTEM-STEM images and the corresponding FFT diffractograms of two typical core-shell nano-structures: a1, a2 with a Y-Al-O nano-core in the annealed (HT1) sample of Fig. 4a, b1, b2 with a Y-Zr-O nano-core in the annealed and thermally-exposed (HT1 + TE1) sample of Fig. 4c
 
																													Fig. 7 Uniaxial tensile stress-strain curves of a the annealed and b the quench-tempered samples at a wide temperature range from room temperature up to 800 °C. c Room temperature UTS vs. EL data of the new ODS die steels in comparison with those of H13 hot-work die steels in open literature [58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76]
| Method | T (°C) | YS (MPa) | UTS (MPa) | EL (%) | 
|---|---|---|---|---|
| Annealed | 25 | 988 ± 7 | 1490 ± 12 | 15.2 ± 1.1 | 
| 500 | 911 ± 24 | 1032 ± 8 | 14.4 ± 1.0 | |
| 600 | 641 ± 14 | 711 ± 9 | 15.5 ± 0.9 | |
| 700 | 281 ± 14 | 318 ± 12 | 12.0 ± 0.7 | |
| 800 | 166 ± 2 | 191 ± 1 | 12.6 ± 0.1 | |
| Quench-tempered | 25 | 1393 ± 40 | 1774 ± 11 | 13.6 ± 0.6 | 
| 500 | 1066 ± 25 | 1176 ± 10 | 15.1 ± 1.4 | |
| 600 | 743 ± 9 | 812 ± 2 | 16.0 ± 1.0 | |
| 700 | 305 ± 2 | 357 ± 3 | 13.4 ± 0.2 | |
| 800 | 187 ± 4 | 216 ± 5 | 12.8 ± 0.6 | 
Table 2 Measured tensile properties of the annealed and quench-tempered samples at different temperatures
| Method | T (°C) | YS (MPa) | UTS (MPa) | EL (%) | 
|---|---|---|---|---|
| Annealed | 25 | 988 ± 7 | 1490 ± 12 | 15.2 ± 1.1 | 
| 500 | 911 ± 24 | 1032 ± 8 | 14.4 ± 1.0 | |
| 600 | 641 ± 14 | 711 ± 9 | 15.5 ± 0.9 | |
| 700 | 281 ± 14 | 318 ± 12 | 12.0 ± 0.7 | |
| 800 | 166 ± 2 | 191 ± 1 | 12.6 ± 0.1 | |
| Quench-tempered | 25 | 1393 ± 40 | 1774 ± 11 | 13.6 ± 0.6 | 
| 500 | 1066 ± 25 | 1176 ± 10 | 15.1 ± 1.4 | |
| 600 | 743 ± 9 | 812 ± 2 | 16.0 ± 1.0 | |
| 700 | 305 ± 2 | 357 ± 3 | 13.4 ± 0.2 | |
| 800 | 187 ± 4 | 216 ± 5 | 12.8 ± 0.6 | 
 
																													Fig. 8 Stability evaluation of the annealed (HT1) and quench-tempered (HT2) samples under different thermal exposures, in comparison with a series of commercial and experimental hot-work die steels in literature. a TE1: 600 °C for 1000 h [55,83,84,85,86,87,88], b TE2: 650 °C for 100 h [55,88,89,90,91,92], and c TE3: 700 °C for 24 h [16,54,57,93,94,95]
| [1] | Z.J. Bao, H.Y. Yang, B.X. Dong, F. Chang, C.D. Li, Y. Jiang, L.Y. Chen, S.L. Shu, Q.C. Jiang, F. Qiu, Materials 16, 6235 (2023) | 
| [2] | G. Li, X. Li, J. Wu, J. Mater. Process. Technol. 74, 23 (1998) | 
| [3] | A. Medvedeva, J. Bergström, S. Gunnarsson, J. Andersson, Mater. Sci. Eng. A 523, 39 (2009) | 
| [4] | G. A. Roberts, R. Kennedy, G. Krauss, Tool steels. ASM International, United States, 1998 | 
| [5] | Q. Tan, Y. Yin, F. Wang, H. Chang, S. Liu, G. Liang, T. Wu, M.X. Zhang, Scr. Mater. 214, 114645 (2022) | 
| [6] | C.Y. Chou, N.H. Pettersson, A. Durga, F. Zhang, C. Oikonomou, A. Borgenstam, J. Odqvist, G. Lindwall, Acta Mater. 215, 117044 (2021) | 
| [7] | L. Dobrzański, J. Mazurkiewicz, E. Hajduczek, J. Madejski, J. Mater. Process. Technol. 113, 527 (2001) | 
| [8] | X. Hu, M. Zhang, X. Wu, L. Li, J. Mater. Sci. Technol. 22, 153 (2006) | 
| [9] | M. Bhat, W. Garrison Jr., V. Zackay, Mater. Sci. Eng. 41, 1 (1979) | 
| [10] | C. Xie, X. Wu, N. Min, Y. Shen, Acta Metall. Sin. 51, 325 (2015) | 
| [11] | Y.L. Wang, K.X. Song, Y.M. Zhang, G.X. Wang, Mater. Sci. Eng. A 746, 127 (2019) | 
| [12] | Y. Xu, X. Zhang, Y. Tian, C. Chen, Y. Nan, H. He, M. Wang, Mater. Charact. 111, 122 (2016) | 
| [13] | D. Casellas, J. Caro, S. Molas, J.M. Prado, I. Valls, Acta Mater. 55, 4277 (2007) | 
| [14] | J.Y. Li, Y.L. Chen, J.H. Huo, Mater. Sci. Eng. A 640, 16 (2015) | 
| [15] | Q.C. Jiang, X.M. Zhao, F. Qiu, T.N. Ma, Q.L. Zhao, Acta Metall Sin.-Engl. Lett. 31, 692 (2018) | 
| [16] | Q. Zhou, X. Wu, N. Shi, J. Li, N. Min, Mater. Sci. Eng. A 528, 5696 (2011) | 
| [17] | M. Pérez, F.J. Belzunce, Mater. Sci. Eng. A 624, 32 (2015) | 
| [18] | A.J. London, S. Santra, S. Amirthapandian, B.K. Panigrahi, R.M. Sarguna, S. Balaji, R. Vijay, C.S. Sundar, S. Lozano-Perez, C.R.M. Grovenor, Acta Mater. 97, 223 (2015) | 
| [19] | H.J. Chang, H.Y. Cho, J.H. Kim, J. Alloys Compd. 653, 528 (2015) | 
| [20] | N. Cunningham, Y. Wu, D. Klingensmith, G.R. Odette, Mater. Sci. Eng. A 613, 296 (2014) | 
| [21] | R. Klueh, J. Shingledecker, R. Swindeman, D. Hoelzer, J. Nucl. Mater. 341, 103 (2005) | 
| [22] | J.H. Kim, T.S. Byun, D.T. Hoelzer, C.H. Park, J.T. Yeom, J.K. Hong, Mater. Sci. Eng. A 559, 111 (2013) | 
| [23] | Q. Qian, Y. Wang, Y. Jiang, C. He, T. Hu,  J. Nucl. Mater. 518, 140 (2019) DOI | 
| [24] | H. Jia, R. Zhang, D. Long, Y. Sun, Z. Zhou, Mater. Sci. Eng. A 839, 142824 (2022) | 
| [25] | X. Wang, Z. Lu, Z. Li, Y. Shi, H. Xu, Mater. Charact. 192, 112221 (2022) | 
| [26] | S. Wu, J. Li, W. Li, S. Liu, J. Alloys Compd. 814, 152282 (2020) | 
| [27] | P. Dou, S. Jiang, L. Qiu, A. Kimura, J. Nucl. Mater. 531, 152025 (2020) | 
| [28] | T.X. Yang, Z.X. Li, C.J. Zhou, Y.C. Xu, P. Dou, J. Nucl. Mater. 585, 154613 (2023) | 
| [29] | P. Dou, A. Kimura, R. Kasada, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, F. Abe, J. Nucl. Mater. 444, 441 (2014) | 
| [30] | S.H. Kim, H. Kim, N.J. Kim, Nature 518, 77 (2015) | 
| [31] | S. Jiang, H. Wang, Y. Wu, X. Liu, H. Chen, M. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata, Nature 544, 460 (2017) | 
| [32] | B. Zhou, T. Yang, G. Zhou, H. Wang, J. Luan, Z. Jiao, Acta Mater. 205, 116561 (2021) | 
| [33] | X. Yang, X. Di, Q. Duan, W. Fu, L. Ba, C. Li, Mater. Sci. Eng. A 872, 144939 (2023) | 
| [34] | Y. Du, X. Hu, S. Zhang, Y. Song, H. Jiang, L.J. Rong, Mater. Charact. 190, 112014 (2022) | 
| [35] | Z. Jiao, J. Luan, M. Miller, C.T. Liu, Acta Mater. 97, 58 (2015) | 
| [36] | X. Yang, X. Di, J. Wang, C. Fang, W. Fu, L. Ba, X. Zhou, C. Zhang, C. Li, Int. J. Plast. 166, 103654 (2023) | 
| [37] | Z. Jiao, J. Luan, Z. Zhang, M. Miller, C. Liu, Scri. Mater. 87, 45 (2014) | 
| [38] | W. Ding, J. Ma, Y. Jiang, Y. Wang, H. Liu, Acta Metall Sin.-Engl. Lett. 37, 364 (2023) | 
| [39] | H. Qvarnström, J. Heat. Treat. 7, 65 (1989) | 
| [40] | H. Wu, Y. Jiang, J. Shang, Y. Wang, F. Cao, J. Alloys Compd. 991, 174520 (2024) | 
| [41] | M. Wang, Z. Zhou, H. Sun, H. Hu, S. Li, Mater. Sci. Eng. A 559, 287 (2013) | 
| [42] | F.M. Moniruzzaman, A. Nasiri, A. Hadadzadeh, Mater. Today Commun. 35, 105934 (2023) | 
| [43] | J. Zhang, Y. Jiang, Z. Liu, Y. Wang, Surf. Interfaces 41, 103235 (2023) | 
| [44] | Z. Teng, G. Ghosh, M.K. Miller, S. Huang, B. Clausen, D.W. Brown, P.K. Liaw, Acta Mater. 60, 5362 (2012) | 
| [45] | S. Marsh, M. Glicksman, Acta Mater. 44, 3761 (1996) | 
| [46] | H. Calderon, M. Fine, Mater. Sci. Eng. 63, 197 (1984) | 
| [47] | K. Cho, K. Ikeda, H.Y. Yasuda, Mater. Sci. Eng. A 728, 239 (2018) | 
| [48] | D. Ping, M. Ohnuma, Y. Hirakawa, Y. Kadoya, K. Hono, Mater. Sci. Eng. A 394, 285 (2005) | 
| [49] | R. Taillard, A. Pineau, Mater. Sci. Eng. 56, 219 (1982) | 
| [50] | P. Cui, S. Yu, F. Zhou, H. Wang, Q. Bai, Z. Zhang, H. Zheng, Z. Lai, Y. Liu, J. Zhu, Mater. Sci. Eng. A 856, 143986 (2022) | 
| [51] | L. Wang, S. Jiang, B. Peng, B. Bai, X. Liu, C. Li, X. Liu, X. Yuan, H. Zhu, Y. Wu, J. Mater. Sci. Technol. 161, 245 (2023) | 
| [52] | C.A. Stewart, E.A. Antillon, M. Sudmanns, J.A. El-Awady, K.E. Knipling, P.G. Callahan, D.J. Rowenhorst, R.W. Fonda, Acta Mater. 272, 119918 (2024) | 
| [53] | Y. Wen, Y. Li, A. Hirata, Y. Zhang, T. Fujita, T. Furuhara, C. Liu, A. Chiba, M. Chen, Acta Mater. 61, 7726 (2013) | 
| [54] | Z. Zhang, D. Delagnes, G. Bernhart, Mater. Sci. Eng. A 380, 222 (2004) | 
| [55] | N. Mole, I. Naglič, R. Šturm, Mater. Today Commun. 22, 100744 (2020) | 
| [56] | C. Zhang, Y. Cao, J. Chen, H. Ye, C. Zhao, J. Huang, Steel Res. Int. 94, 2200811 (2023) | 
| [57] | A. Ning, Y. Liu, R. Gao, S. Yue, M. Wang, H. Guo, JOM 73, 2194 (2021) | 
| [58] | G.H. Yan, X.M. Huang, Y.Q. Wang, X.G. Qin, M. Yang, Z.M. Chu, K. Jin, Met. Sci. Heat Treat. 52, 393 (2010) | 
| [59] | G. Telasang, J. Dutta Majumdar, N. Wasekar, G. Padmanabham, I. Manna, Metall. Mater. Trans. A. 46, 2309 (2015) | 
| [60] | H. Ding, Z. Yuan, T. Liu, L. Chen, Y. Zhou, Y. Cao, F. Cao, R. Luo, X. Cheng, Mater. Sci. Eng. A 866, 144655 (2023) | 
| [61] | A. Ning, W. Mao, X. Chen, H. Guo, J. Guo, Metals 7, 70 (2017) | 
| [62] | A. Röttger, J. Boes, F. Großwendt, S. Weber, Addit. Manuf. 61, 103292 (2023) | 
| [63] | J. Yan, H. Song, Y. Dong, W.M. Quach, M. Yan, Mater. Sci. Eng. A 773, 138845 (2020) | 
| [64] | G. Huang, K. Wei, X. Zeng, Mater. Sci. Eng. A 858, 144154 (2022) | 
| [65] | F. Lei, T. Wen, F. Yang, J. Wang, J. Fu, H. Yang, J. Wang, J. Ruan, S. Ji, Materials 15, 2686 (2022) | 
| [66] | L. Wu, S. Das, W. Gridin, S. Leuders, M. Kahlert, M. Vollmer, T. Niendorf, Adv. Eng. Mater. 23, 2100049 (2021) | 
| [67] | L. Xue, J. Chen, S.H. Wang, Metall. Microstruct. Anal. 2, 67 (2013) | 
| [68] | M. Koneshlou, K.M. Asl, F. Khomamizadeh, Cryogenics 51, 55 (2011) | 
| [69] | A. Çiçek, F. Kara, T. Kıvak, E. Ekici, I. Uygur, J. Mater. Eng. Perform. 24, 4431 (2015) | 
| [70] | S. Katoch, R. Sehgal, V. Singh, Int. J. Mater. Res. 108, 173 (2017) | 
| [71] | W. Zhou, J. Zhu, Z. Zhang, Metall. Mater. Trans. A 51, 4662 (2020) | 
| [72] | J. Zhu, J. Xie, Z. Zhang, H. Huang, Steel Res. Int. 89, 1800044 (2018) | 
| [73] | G. Telasang, J.D. Majumdar, G. Padmanabham, I. Manna, Mater. Sci. Eng. A 599, 255 (2014) | 
| [74] | H. Wang, H. Li, H. Feng, W. Jiao, H. Zhu, S. Zhang, Z. Jiang, Mater. Charact. 203, 113154 (2023) | 
| [75] | J. Gu, J. Li, R. Chang, L. Li, Mater. Sci. Eng. A 766, 138386 (2019) | 
| [76] | J. Zhu, Z. Zhang, J. Xie, Mater. Sci. Eng. A 752, 101 (2019) | 
| [77] | R. Klueh, P. Maziasz, I. Kim, L. Heatherly, D. Hoelzer, N. Hashimoto, E. Kenik, K. Miyahara, J. Nucl. Mater. 307, 773 (2002) | 
| [78] | Z. Oksiuta, P. Olier, Y. De Carlan, N. Baluc, J. Nucl. Mater. 393, 114 (2009) | 
| [79] | Z. Oksiuta, M. Lewandowska, K. Kurzydłowski, Mech. Mater. 67, 15 (2013) | 
| [80] | A. Chauhan, D. Litvinov, J. Aktaa, J. Nucl. Mater. 468, 1 (2016) | 
| [81] | M. Praud, F. Mompiou, J. Malaplate, D. Caillard, J. Garnier, A. Steckmeyer, B. Fournier, J. Nucl. Mater. 428, 90 (2012) | 
| [82] | J.H. Kim, T.S. Byun, D.T. Hoelzer, J. Nucl. Mater. 407, 143 (2010) | 
| [83] | Jieteng Group (2002), https://www.sh-jieteng.com/page116?product_category=40. Accessed 28 Apr 2025 | 
| [84] | U. Naoki, Mold Technol. 35, 38 (2020) | 
| [85] | H. Morikawa, Electr. Steel 81, 48 (2010) | 
| [86] | M.C. Ferrari, J. Andersson, M. Kvarnström, Int. Heat Treat. Surf. Eng. 7, 129 (2013) | 
| [87] | M. Wang, W. Li, Y. Wu, S. Li, C. Cai, S. Wen, Q. Wei, Y. Shi, F. Ye, Z. Chen, Metall. Mater. Trans. B 50, 531 (2019) DOI | 
| [88] | A. Persson, S. Hogmark, J. Bergström, Int. J. Fatigue 26, 1095 (2004) | 
| [89] | L. Li, Z. Cai, X. Wu, Metals 13, 100 (2023) | 
| [90] | Y.J. Shi, X.C. Wu, J.W. Li, N. Min, Int. J. Miner. Metall. Mater. 24, 1145 (2017) | 
| [91] | H. Feng, H.J. Wang, H.B. Li, W.C. Jiao, H.C. Zhu, S.C. Zhang, Z.H. Jiang, Steel Res. Int. 95, 2300251 (2024) | 
| [92] | S. Li, X. Wu, S. Chen, J. Li, J. Mater. Eng. Perform. 25, 2993 (2016) | 
| [93] | T.W. Jin, Dissertation, Harbin Engineering University, 2015. | 
| [94] | Y. Wang, K. Song, Y. Zhang, Mater. Res. Express 6, 096513 (2019) | 
| [95] | X.X. Luo, X.S. He, K. Cui, Mater. Mech. Eng. 76, 44 (1990) | 
| [1] | Shuyi Ren, Jiao Li, Kai Wu, Xiaoge Li, Yaqiang Wang, Jinyu Zhang, Gang Liu, Jun Sun. Thermal Stability and Mechanical Properties of Nanotwinned Ni-W Alloyed Films [J]. Acta Metallurgica Sinica (English Letters), 2025, 38(9): 1570-1582. | 
| [2] | X. Y. Yue, S. Y. Peng, X. Zhang, C. N. He, Y. Z. Tian. Distinct Electrical and Mechanical Responses of a Cu-10Fe Composite Prepared by Hot-Pressed Sintering and Post Treatment [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 255-265. | 
| [3] | Wenquan Ding, Jieli Ma, Yong Jiang, Yiren Wang, Huiqun Liu. Developing Core-Shell Nano-Structures in FeCrAl-ODS Ferritic Alloys with the Co-Addition of Ni and Zr [J]. Acta Metallurgica Sinica (English Letters), 2024, 37(2): 364-372. | 
| [4] | Shuang Ma, Junyu Zhang, Xudong Wang, Rie Y. Umetsu, Li Jiang, Wei Zhang, Man Yao. Structural Origins for Enhanced Thermal Stability and Glass-Forming Ability of Co-B Metallic Glasses with Y and Nb Addition [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 962-972. | 
| [5] | Yitong Yang, Jingyu Pang, Hongwei Zhang, Aimin Wang, Zhengwang Zhu, Hong Li, Guangquan Tang, Long Zhang, Haifeng Zhang. Short-Term Splitting and Long-Term Stability of Cuboidal Nanoparticles in Ni44Co22Cr22Al6Nb6 Multi-Principal Element Alloy [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(6): 999-1006. | 
| [6] | Shiyu He, Qi Qian, Zhe Huang, Yuxiang Gong, Jiajing Chen, Yiren Wang, Yong Jiang. Nucleation of Y-Si-O Nano-clusters in Multi-microalloyed Nano-structured Ferritic Alloys: a First-principles Study [J]. Acta Metallurgica Sinica (English Letters), 2021, 34(7): 955-962. | 
| [7] | Yu-Ning Zan, Yang-Tao Zhou, Xiao-Nan Li, Guo-Nan Ma, Zhen-Yu Liu, Quan-Zhao Wang, Dong Wang, Bo-Lv Xiao, Zong-Yi Ma. Enhancing High-Temperature Strength and Thermal Stability of Al2O3/Al Composites by High-Temperature Pre-treatment of Ultrafine Al Powders [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(7): 913-921. | 
| [8] | Dongping Zhan, Guoxing Qiu, Changsheng Li, Yongkun Yang, Zhouhua Jiang, Huishu Zhang. Evolution of Microstructures and Mechanical Properties of Zr-Containing Y-CLAM During Thermal Aging [J]. Acta Metallurgica Sinica (English Letters), 2020, 33(6): 881-891. | 
| [9] | Yan?Ming Liu, Tong Li, Feng Liu, Zhi-Liang Pei. Thermal Stability of WB2 and W-B-N Films Deposited by Magnetron Sputtering [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(1): 136-144. | 
| [10] | Jiang-Man Xu, Yong Liu, Bin Jin, Jia-Xin Li, Shi-Ming Zhai, Xiang-Jie Yang, Jian Lu. Thermal Stability of Nanocrystalline AZ31 Magnesium Alloy Fabricated by Surface Mechanical Attrition Treatment [J]. Acta Metallurgica Sinica (English Letters), 2015, 28(9): 1162-1169. | 
| [11] | Linxiu Du, Shengjie Yao, Jun Hu, Huifang Lan, Hui Xie, Guodong Wang. Fabrication and Microstructural Control of Nano-structured Bulk Steels: A Review [J]. Acta Metallurgica Sinica (English Letters), 2014, 27(3): 508-520. | 
| [12] | Yanxin ZHUANG, Jun CHEN, Puwei WANG, Jicheng HE. Effect of Ni on the formation and thermal behavior of NdAlCo metallic glasses [J]. Acta Metallurgica Sinica (English Letters), 2011, 24(4): 281-286. | 
| [13] | S. Baez, I. Betancourt, I.A. Figueroa. Synthesis and characterization of bulk composite Fe-Si-B alloys with small concentration of Nb and Mo [J]. Acta Metallurgica Sinica (English Letters), 2010, 23(6): 401-408. | 
| [14] | FAN Guojiang, QUAN Mingxiu, HU ZhuangqiInstitute of Metal Research. Chinese Academy of Sciences, Shenyang, China Manuscript received 6 May, 1994. INVESTIGATION ON MECHANICALLY ALLOYED SUPERSATURATED NANOCRYSTALLINE Al-Ti ALLOYS [J]. Acta Metallurgica Sinica (English Letters), 1994, 7(2): 124-128. | 
| [15] | QU Xuanhui HUANC Baiyun LEI Changming CHEN Shiqi Central South University of Technology,Changsha,China professor,Powder Metallurgy Research Institute,Central South University of Technology,Changsha 410083,China. SYNTHESIS OF TiAl+TiB_2 COMPOSITE AND-ITS THERMAL STABILITY [J]. Acta Metallurgica Sinica (English Letters), 1993, 6(12): 427-431. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
 WeChat
			   WeChat
			