Acta Metallurgica Sinica (English Letters) ›› 2023, Vol. 36 ›› Issue (1): 1-20.DOI: 10.1007/s40195-022-01445-z
Hua-Zhen Jiang1, Qi-Sheng Chen1,2,*(), Zheng-Yang Li1,2,*(
), Xin-Ye Chen3, Hui-Lei Sun1, Shao-Ke Yao1,2, Jia-Huiyu Fang1,2, Qi-Yun Hu1,2
Received:
2022-05-08
Revised:
2022-06-07
Accepted:
2022-06-21
Online:
2023-01-10
Published:
2022-08-16
Contact:
* Qi‑Sheng Chen, qschen@imech.ac.cn; Zheng‑Yang Li,zyli@imech.ac.cn
Hua-Zhen Jiang, Qi-Sheng Chen, Zheng-Yang Li, Xin-Ye Chen, Hui-Lei Sun, Shao-Ke Yao, Jia-Huiyu Fang, Qi-Yun Hu. Microstructure and Size-Dependent Mechanical Properties of Additively Manufactured 316L Stainless Steels Produced by Laser Metal Deposition[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 1-20.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Experimental details in the study: a morphology of the as-used 316L SS powder, b a sketch of laser inside powder feeding nozzle, and c real photograph of the LMD system
Fe | Cr | Ni | Mo | Mn | Si | C | P | S |
---|---|---|---|---|---|---|---|---|
Bal. | 19.30 ± 0.5 | 11.15 ± 0.65 | 1.70 ± 0.2 | 0.60 ± 0.3 | 1.40 ± 0.1 | ≤ 0.03 | ≤ 0.04 | ≤ 0.01 |
Table 1 Chemical composition of as-used 316L SS powders (wt%)
Fe | Cr | Ni | Mo | Mn | Si | C | P | S |
---|---|---|---|---|---|---|---|---|
Bal. | 19.30 ± 0.5 | 11.15 ± 0.65 | 1.70 ± 0.2 | 0.60 ± 0.3 | 1.40 ± 0.1 | ≤ 0.03 | ≤ 0.04 | ≤ 0.01 |
Laser power (W) | Beam diameter (mm) | Scanning speed (mm/s) | Powder feeding rate (g/min) | Hatch spacing (mm) | Layer thickness (mm) |
---|---|---|---|---|---|
1100 | 2.0 | 6.0 | 10.3 | 1.0 | 0.2 |
Table 2 Optimal process parameters used in this work
Laser power (W) | Beam diameter (mm) | Scanning speed (mm/s) | Powder feeding rate (g/min) | Hatch spacing (mm) | Layer thickness (mm) |
---|---|---|---|---|---|
1100 | 2.0 | 6.0 | 10.3 | 1.0 | 0.2 |
Fig. 3 a Defects detection using OM method, b the corresponding distribution of defect size in terms of the major axis length in a, c OM image showing the columnar dendrites (e.g., region B) and cells (e.g., region A) in the material, the yellow and blue arrows indicate dendrites and cells, respectively, d SEM image revealing the solidification microstructure, e a magnified view showing the columnar dendrite and cell structures
Fig. 4 Microstructure of LMD-produced 316L SS sample observed by EBSD: a IQ map, b IPF image, c PF image, d band contrast map, e KAM map, f phase mapping, g misorientation angle distribution, and h grain size distribution
Fig. 5 A summary of mechanical properties versus specimen size for LMD-produced 316L SS samples: a yield strength, b ultimate tensile strength, c elongation to failure, and d slimness ratio dependence of elongation to failure with different specimen sizes
Fig. 6 Represented fracture surface of sample ‘S0.5-1’ (εf?=?12.9%). a Macroscopic fracture morphology, b, c are enlarged images showing the pore defects, d a high magnified image revealing the dimple fracture and oxide particles
Fig. 7 Represented fracture surface of sample ‘S1-1’ (εf?=?14.2%). a Macroscopic fracture morphology, b, c are enlarged images showing the pores and lack of fusion defects, d a high magnified image revealing the dimple fracture and oxide particles
Fig. 8 Represented fracture surface of sample ‘S2-2’ (εf?=?11.7%). a Macroscopic fracture morphology, b SEM image revealing the lack of fusion defects, c an enlarged image showing the pores, d a high magnified image revealing the dimple fracture and oxide particles
Fig. 9 Represented fracture surface of sample ‘w4.5-4’ (εf?=?12.2%). a Macroscopic fracture morphology, b, c enlarged images showing the dimple fracture and oxide particles
Fig. 10 Represented fracture surface of sample ‘w10-4’ (εf?=?15.7%). a Macroscopic fracture morphology, b SEM image revealing the pore defect, c a high magnified image revealing the dimple fracture and oxide particles
Fig. 11 Represented fracture surface of sample ‘w10-1’ (εf?=?35%). a Macroscopic fracture morphology, b, c are enlarged images showing the pores and lack of fusion defects, d a high magnified image revealing the dimple fracture and oxide particles
Fig. 12 Defect size distribution measured on the observed fracture surfaces. The corresponding area fraction of defect region is also presented. a Sample ‘S1-1’, b Sample ‘S2-2’, c Sample ‘S0.5-1’, d Sample ‘w10-1’, e Sample ‘w10-4’, f Sample ‘w4.5-4’
Fig. 13 OM and SEM images showing a representative side view of LMD-produced specimen after tensile testing: a OM image showing the crack propagates to the edge of fractured sample surface, b OM image showing the crack initiates from the pore, c SEM image showing an intergranular fracture mode
Spectrum location | Element | |||||
---|---|---|---|---|---|---|
Si | Cr | Mn | Fe | Ni | Mo | |
Oxide particles | 10.80 ± 1.61 | 27.11 ± 4.39 | 5.59 ± 2.93 | 45.25 ± 4.68 | 7.50 ± 1.00 | 2.36 ± 1.66 |
316L base material | 0.58 ± 0.37 | 20.68 ± 1.82 | 0.60 ± 0.32 | 64.53 ± 2.87 | 10.78 ± 2.19 | 2.48 ± 1.35 |
Table 3 EDS analysis results of oxide particles and LMD-produced 316L base from different sample fracture surfaces (wt%)
Spectrum location | Element | |||||
---|---|---|---|---|---|---|
Si | Cr | Mn | Fe | Ni | Mo | |
Oxide particles | 10.80 ± 1.61 | 27.11 ± 4.39 | 5.59 ± 2.93 | 45.25 ± 4.68 | 7.50 ± 1.00 | 2.36 ± 1.66 |
316L base material | 0.58 ± 0.37 | 20.68 ± 1.82 | 0.60 ± 0.32 | 64.53 ± 2.87 | 10.78 ± 2.19 | 2.48 ± 1.35 |
Fig. 14 A summary of yield strength versus elongation to failure for LMD-produced 316L SS from our work and previous studies [5,79,14,16,17,18,19]. The reported values are collected from different references where the LMD-produced samples are produced by different processing parameters and are tensile tested by various sample sizes and shapes
Fig. 15 Microstructures of deformed sample: a IQ map, b band contrast map, c IPF image, d KAM map, e grain size distribution, f misorientation angle distribution, g phase mapping
[1] | D. Svetlizky, M. Das, B. Zheng, A.L. Vyatskikh, S. Bose, A. Bandyopadhyay, J.M. Schoenung, E.J. Lavernia, N. Eliaz, Mater. Today 49, 271 (2021) |
[2] |
H.Z. Jiang, Z.Y. Li, T. Feng, P.Y. Wu, Q.S. Chen, Y.L. Fen, S.W. Li, H. Gao, H.J. Xu, Opt. Laser. Technol. 119, 105592 (2019)
DOI URL |
[3] | H.Z. Jiang, Z.Y. Li, T. Feng, P.Y. Wu, Q.S. Chen, Y.L. Feng, L.F. Chen, J.Y. Hou, H. Xu, Acta Metall. Sin. 34, 495 (2020). (Engl. Lett.) |
[4] |
Y. Zhong, L.F. Liu, S. Wikman, D.Q. Cui, Z.J. Shen, J. Nucl. Mater. 470, 170 (2016)
DOI URL |
[5] | M. Ziętala, T. Durejko, M. Polański, I. Kunce, T. Płociński, W. Zieliński, M. Łazińska, W. Stępniowski, T. Czujko, K.J. Kurzydłowski, Z. Bojar, Mater. Sci. Eng. A 677, 1 (2016) |
[6] | P. Kürnsteiner, M.B. Wilms, A. Weisheit, B. Gault, E.A. Jägle, D. Raabe,Nature 582, 515 (2020) |
[7] | N. Li, Z. Li, Y. Wei,Nanomaterials 11, 2859 (2021) |
[8] |
Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A.V. Hamza, T. Zhu, Nat. Mater. 17, 63 (2018)
DOI URL |
[9] | M. Ma, Z. Wang, X. Zeng, Mater. Sci. Eng. A 685, 265 (2017) |
[10] |
D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater. 117, 371 (2016)
DOI URL |
[11] | A. Saboori, A. Aversa, G. Marchese, S. Biamino, M. Lombardi, P. Fino, Appl. Sci. Basel 10, 3310 (2020) |
[12] | L. Liu, Q. Ding, Y. Zhong, J. Zou, J. Wu, Y.L. Chiu, J. Li, Z. Zhang, Q. Yu, Z. Shen, Mater. Today 21, 354 (2018) |
[13] |
Z.J. Sun, X.P. Tan, S.B. Tor, C.K. Chua, NPG Asia Mater. 10, 127 (2018)
DOI URL |
[14] |
N. Yang, J. Yee, B. Zheng, K. Gaiser, T. Reynolds, L. Clemon, W.Y. Lu, J.M. Schoenung, E.J. Lavernia, J. Therm. Spray Technol. 26, 610 (2017)
DOI URL |
[15] |
Z. Yan, K. Zou, M. Cheng, Z. Zhou, L. Song, J. Mater. Res. Technol. 15, 582 (2021)
DOI URL |
[16] | A. Aversa, A. Saboori, E. Librera, M. de Chirico, S. Biamino, M.Lombardi, P. Fino, Addit. Manuf. 34(101274), 101274 (2020) |
[17] | A. Saboori, A. Aversa, F. Bosio, E. Bassini, E. Librera, M. DeChirico, S. Biamino, D. Ugues, P. Fino, M. Lombardi, Mater. Sci.Eng. A 766, 138360 (2019) |
[18] |
K. Zhang, S. Wang, W. Liu, X. Shang, Mater. Des. 55, 104 (2014)
DOI URL |
[19] |
P. Guo, B. Zou, C. Huang, H. Gao, J. Mater. Process. Technol. 240, 12 (2017)
DOI URL |
[20] | D. Gu, X. Shi, R. Poprawe, D.L. Bourell, R. Setchi, J. Zhu,Science 372, 932 (2021) |
[21] | K. Mertová, J. Džugan, M. Roudnická, M. Daniel, D. Vojtěch, M. Seifi, J.J. Lewandowski,Metals 10, 1340 (2020) |
[22] |
P. Wang, M.H. Goh, Q. Li, M.L.S. Nai, J. Wei, Virtual Phys. Prototy. 15, 251 (2020)
DOI URL |
[23] |
B. Brown, W. Everhart, J. Dinardo, Rapid Prototyp. J. 22, 801(2016)
DOI URL |
[24] | A.M. Roach, B.C. White, A. Garland, B.H. Jared, J.D. Carroll, B.L. Boyce, Addit. Manuf. 32, 101090 (2020) |
[25] |
J. Dzugan, M. Seifi, R. Prochazka, M. Rund, P. Podany, P. Konopik, J.J. Lewandowski, Mater. Charact. 143, 94 (2018)
DOI URL |
[26] |
D. Barba, C. Alabort, Y. Tang, M. Viscasillas, R. Reed, E. Alabort, Mater. Des. 186, 108235 (2020)
DOI URL |
[27] | A. Saboori, G. Piscopo, M. Lai, A. Salmi, S. Biamino, Mater. Sci. Eng. A 780, 139179 (2020) |
[28] |
J. Shi, P. Zhu, G. Fu, S. Shi, Opt. Laser. Technol. 101, 341 (2018)
DOI URL |
[29] |
W. Yang, Y. Tarng, J. Mater. Process. Technol. 84, 122 (1998)
DOI URL |
[30] |
M. Ma, Z. Wang, D. Wang, X. Zeng, Opt. Laser. Technol. 45, 209(2013)
DOI URL |
[31] | H.Z. Jiang, Z.Y. Li, T. Feng, P.Y. Wu, Q.S. Chen, S.K. Yao, J.Y. Hou, Acta Metall. Sin. -Engl. Lett. 35, 773 (2021) |
[32] | Z. Li, T. Voisin, J.T. McKeown, J.C. Ye, T. Braun, C. Kamath, W.E. King, Y.M. Wang, Int. J.Plasticity 120, 395 (2019) |
[33] |
T. Debroy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92, 112 (2018)
DOI URL |
[34] |
J. Li, D. Deng, X. Hou, X. Wang, G. Ma, D. Wu, G. Zhang, Mater. Sci. Technol. 32, 1223 (2016)
DOI URL |
[35] |
B. Barkia, P. Aubry, P. Haghi-Ashtiani, T. Auger, L. Gosmain, F. Schuster, H. Maskrot, J. Mater. Sci. Technol. 41, 209 (2020)
DOI |
[36] | T. Kurzynowski, K. Gruber, W. Stopyra, B. Kuźnicka, E. Chlebus, Mater. Sci. Eng. A 718, 64 (2018) |
[37] | A. Yadollahi, N. Shamsaei, S.M. Thompson, D.W. Seely, Mater. Sci. Eng. A 644, 171 (2015) |
[38] | M. Shamsujjoha, S.R. Agnew, J.M. Fitz-Gerald, W.R. Moore, T.A. Newman, Metall. Mater. Trans. A 49, 3011 (2018) |
[39] |
D. Kong, C. Dong, X. Ni, L. Zhang, J. Yao, C. Man, X. Cheng, K. Xiao, X. Li, J. Mater. Sci. Technol. 35, 1499 (2019)
DOI URL |
[40] |
D. Kong, C. Dong, X. Ni, Z. Liang, C. Man, X. Li, Mater. Res. Lett. 8, 390 (2020)
DOI URL |
[41] | M. Mukherjee,Materialia 7, 100359 (2019) |
[42] |
C.-H. Shiau, M.D. McMurtrey, R.C. O’Brien, N.D. Jerred, R.D. Scott, J. Lu, X. Zhang, Y. Wang, L. Shao, C. Sun, Mater. Des. 204, 109644 (2021)
DOI URL |
[43] | J.W. Elmer, S.M. Allen, T.W. Eagar, Metall. Mater. Trans. A 20, 2117 ( 1989) |
[44] | I. Tolosa, F. Garciandía, F. Zubiri, F. Zapirain, A. Esnaola, Int. J. Adv. Manuf. Technol. 51, 639 (2010) |
[45] |
I.A. Segura, L.E. Murr, C.A. Terrazas, D. Bermudez, J. Mireles, V.S.V. Injeti, K. Li, B. Yu, R.D.K. Misra, R.B. Wicker, J. Mater. Sci. Technol. 35, 351 (2019)
DOI |
[46] | C. Elangeswaran, A. Cutolo, G.K. Muralidharan, C. de Formanoir, F. Berto, K. Vanmeensel, B. Van Hooreweder, Int. J.Fatigue 123, 31 (2019) |
[47] | T.M. Mower, M.J. Long, Mater. Sci. Eng. A 651, 198 (2016) |
[48] | J. R. Davis,Tensile testing, 2nd edn. (ASM International, United States of America, 2004), pp. 45-46. |
[49] |
K. Saeidi, L. Kvetkova, F. Lofajc, Z.J. Shen, RSC Adv. 5, 20747 (2015)
DOI URL |
[50] |
L. Cui, S. Jiang, J. Xu, R.L. Peng, R.T. Mousavian, J. Moverare, Mater. Des. 198, 109385 (2021)
DOI URL |
[51] |
T. Voisin, J.B. Forien, A. Perron, S. Aubry, N. Bertin, A. Samanta, A. Baker, Y.M. Wang, Acta Mater. 203, 116476 (2021)
DOI URL |
[52] |
X. Wu, Y. Zhu, Mater. Res. Lett. 5, 527 (2017)
DOI URL |
[53] | X. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang, Y. Zhu, P. Natl, Acad. Sci. USA 112, 14501 (2015) |
[54] | J. He, Y. Ma, D. Yan, S. Jiao, F. Yuan, X. Wu, Mater. Sci. Eng. A 726, 288 (2018) |
[55] |
Y. Zhu, X. Wu, Mater. Res. Lett. 7, 393 (2019)
DOI URL |
[56] |
C. Sun, W. Chi, W. Wang, Y. Duan, Int. J. Mech. Sci. 205, 106591 (2021)
DOI URL |
[1] | Yuan Tian, Kanwal Chadha, Clodualdo Aranas Jr.. Deformation-Induced Strengthening Mechanism in a Newly Designed L-40 Tool Steel Manufactured by Laser Powder Bed Fusion [J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 21-34. |
[2] | Yinuo Guo, Haijun Su, Peixin Yang, Yong Zhao, Zhonglin Shen, Yuan Liu, Di Zhao, Hao Jiang, Jun Zhang, Lin Liu, Hengzhi Fu. A Review of Emerging Metallic System for High-Energy Beam Additive Manufacturing: Al-Co-Cr-Fe-Ni High Entropy Alloys [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1407-1423. |
[3] | Mohammad Hossein Mosallanejad, Saber Sanaei, Masoud Atapour, Behzad Niroumand, Luca Iuliano, Abdollah Saboori. Microstructure and Corrosion Properties of CP-Ti Processed by Laser Powder Bed Fusion under Similar Energy Densities [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1453-1464. |
[4] | Jian-Yu Li, Shi-Ning Kong, Chi-Kun Liu, Bin-Bin Wang, Zhao Zhang. Chemical Composition Effect on Microstructures and Mechanical Properties in Friction Stir Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1494-1508. |
[5] | Junrong Tang, Naeem ul Haq Tariq, Zhipo Zhao, Mingxiao Guo, Hanhui Liu, Yupeng Ren, Xinyu Cui, Yanfang Shen, Jiqiang Wang, Tianying Xiong. Microstructure and Mechanical Properties of Ti-Ta Composites Prepared Through Cold Spray Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1465-1476. |
[6] | Yongxin Lu, Fan Luo, Zhen Chen, Jian Cao, Kai Song, Lei Zhao, Xueli Xu, Hongduo Wang, Wenya Li. Microstructure and Mechanical Properties of Graphene Reinforced K418 Superalloy by Selective Laser Melting [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(9): 1477-1493. |
[7] | Jialin Yang, Xing Li, Hanbo Yao, Yingchun Guan. Interfacial Features of Stainless Steel/Titanium Alloy Multi-metal Fabricated by Laser Additive Manufacturing [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1357-1364. |
[8] | Jingyi Zou, Zhongwei Wang, Yanlong Ma, Liwen Tan. Tribocorrosion Behavior and Degradation Mechanism of 316L Stainless Steel in Alkaline Solution: Effect of Tribo-Film [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1365-1375. |
[9] | Hua-Zhen Jiang, Zheng-Yang Li, Tao Feng, Peng-Yue Wu, Qi-Sheng Chen, Shao-Ke Yao, Jing-Yu Hou. Effect of Annealing Temperature and Strain Rate on Mechanical Property of a Selective Laser Melted 316L Stainless Steel [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(5): 773-789. |
[10] | Yujian Wang, Shuo Chu, Zhijun Wang, Junjie Li, Jincheng Wang. On Ti6Al4V Microsegregation in Electron Beam Additive Manufacturing with Multiphase-Field Simulation Coupled with Thermodynamic Data [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 425-438. |
[11] | Sheng Huang, Xiaoyu Zhang, Dichen Li, Qingyu Li. Microstructure and Mechanical Properties of B-Bearing Austenitic Stainless Steel Fabricated by Laser Metal Deposition In-Situ Alloying [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 453-465. |
[12] | Yueling Guo, Qifei Han, Jinlong Hu, Xinghai Yang, Pengcheng Mao, Junsheng Wang, Shaobo Sun, Zhi He, Jiping Lu, Changmeng Liu. Comparative Study on Wire-Arc Additive Manufacturing and Conventional Casting of Al-Si Alloys: Porosity, Microstructure and Mechanical Property [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 475-485. |
[13] | Rong Xu, Ruidi Li, Tiechui Yuan, Hongbin Zhu, Ping Li. Microstructure and Mechanical Properties of TiC-Reinforced Al-Mg-Sc-Zr Composites Additively Manufactured by Laser Direct Energy Deposition [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 411-424. |
[14] | Hui Wang, Biao Guo, Xuguang An, Yu Zhang. Influence of Cold-Rolling Reduction on Microstructure and Tensile Properties of Nuclear FeCrAl Alloy with Low Cr and Nb Contents [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(12): 2101-2110. |
[15] | Naying An, Sansan Shuai, Tao Hu, Chaoyue Chen, Jiang Wang, Zhongming Ren. Application of Synchrotron X-Ray Imaging and Diffraction in Additive Manufacturing: A Review [J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1): 25-48. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||